Proof Theory: Finite Data from Infinite Mathematics
证明论:无限数学中的有限数据
基本信息
- 批准号:1600263
- 负责人:
- 金额:$ 15.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many mathematical questions can be solved in multiple ways, each with its own advantages. Short, conceptual proofs can avoid complicated calculations, but sometimes cannot provide the detailed quantitative information those calculations would reveal. A recent insight is that, sometimes, mathematics can have it both ways. By studying the structure of mathematical proof itself, techniques from the field known as proof theory make it possible to take abstract proofs and to extract detailed calculations from them. Used in the opposite direction, these techniques can take certain kinds of lengthy calculations and replace them with short, abstract arguments which can then be generalized to prove new results. The focus of this project is to both further extend these techniques to new areas, particularly recently discovered applications in statistics, as well as continue the application of known techniques to new problems, especially in areas where probability and randomness play a central role.In this project, Towsner will build on previous applications of ultraproducts to studying the way mathematical objects can be separated into structured and random parts. An explicit quantitative approach to such dichotomies has long been central to extremal graph theory, but recent work has shown that these can also be viewed in measure-theoretic terms by using ultraproducts to mediate between the finitary and infinitary perspectives, leading to new results in the area. Towsner will study this connection systematically, both developing new tools in the infinitary setting and using the proof-theoretic functional interpretation to translate these tools back to the classical setting, extracting explicit calculations from these infinitary arguments.
许多数学问题可以用多种方法解决,每种方法都有自己的优点。简短的概念证明可以避免复杂的计算,但有时不能提供这些计算所揭示的详细的定量信息。最近的一个洞察是,有时,数学可以两全其美。通过研究数学证明本身的结构,来自被称为证明论的领域的技术使得获取抽象的证明并从中提取详细的计算成为可能。在相反的方向上,这些技术可以进行某些类型的冗长计算,并用简短、抽象的论点来取代它们,然后可以推广这些论点来证明新的结果。这个项目的重点是将这些技术进一步扩展到新的领域,特别是最近在统计学中发现的应用,以及继续将已知技术应用于新的问题,特别是在概率和随机性发挥核心作用的领域。在这个项目中,Towsner将建立在超积的先前应用的基础上,研究数学对象如何被分为结构部分和随机部分。这种二分性的显式定量方法长期以来一直是极值图论的核心,但最近的工作表明,通过使用超积在有限和无限视角之间进行调解,这些二分性也可以用测度论的形式来看待,从而在该领域产生了新的结果。Towsner将系统地研究这种联系,既在无限背景下开发新的工具,又使用证明论函数解释将这些工具翻译回经典背景,从这些无限论证中提取显式计算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Henry Towsner其他文献
Impact of an Emerging Scholars/Peer-Led Team Learning Program on the Recruitment of Undergraduate Women and Underrepresented Minorities into Computer Science and Mathematics
新兴学者/同行主导的团队学习计划对招募本科女性和代表性不足的少数族裔进入计算机科学和数学领域的影响
- DOI:
10.18260/1-2--43465 - 发表时间:
- 期刊:
- 影响因子:0
- 作者:
R. Powell;Henry Towsner;Brett Frankel - 通讯作者:
Brett Frankel
Transfinite approximation of Hindman’s theorem
- DOI:
10.1007/s11856-011-0195-1 - 发表时间:
2011-11-23 - 期刊:
- 影响因子:0.800
- 作者:
Mathias Beiglböck;Henry Towsner - 通讯作者:
Henry Towsner
Elements of Logical Reasoning by Jan von Plato
- DOI:
10.1007/s00283-015-9542-0 - 发表时间:
2015-04-22 - 期刊:
- 影响因子:0.400
- 作者:
Henry Towsner - 通讯作者:
Henry Towsner
Erdős–Moser and IΣ2
- DOI:
10.1007/s11856-024-2643-8 - 发表时间:
2024-08-04 - 期刊:
- 影响因子:0.800
- 作者:
Henry Towsner;Keita Yokoyama - 通讯作者:
Keita Yokoyama
Henry Towsner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Henry Towsner', 18)}}的其他基金
Explicit Proofs from Compactness and Saturation
紧致性和饱和性的显式证明
- 批准号:
2054379 - 财政年份:2021
- 资助金额:
$ 15.41万 - 项目类别:
Standard Grant
Proof Theoretic Aspects of Ergodic Ramsey Theory
遍历拉姆齐理论的证明理论方面
- 批准号:
1340666 - 财政年份:2012
- 资助金额:
$ 15.41万 - 项目类别:
Standard Grant
Proof Theoretic Aspects of Ergodic Ramsey Theory
遍历拉姆齐理论的证明理论方面
- 批准号:
1157580 - 财政年份:2011
- 资助金额:
$ 15.41万 - 项目类别:
Standard Grant
Proof Theoretic Aspects of Ergodic Ramsey Theory
遍历拉姆齐理论的证明理论方面
- 批准号:
1001528 - 财政年份:2010
- 资助金额:
$ 15.41万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Connecting Parton Cascade to QCDS Shear Viscosity for a Dynamical Model of Finite Temperature Kinetic Theory
将 Parton Cascade 连接到 QCDS 剪切粘度以建立有限温度动力学理论的动态模型
- 批准号:
2310021 - 财政年份:2023
- 资助金额:
$ 15.41万 - 项目类别:
Standard Grant
Further extension of the distribution theory of covariance matrices on finite dimensional field
有限维域上协方差矩阵分布理论的进一步推广
- 批准号:
23K11016 - 财政年份:2023
- 资助金额:
$ 15.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Invariable generation in finite groups with applications to algorithmic number theory
有限群中的不变生成及其在算法数论中的应用
- 批准号:
EP/T017619/3 - 财政年份:2022
- 资助金额:
$ 15.41万 - 项目类别:
Fellowship
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
- 批准号:
RGPIN-2022-03600 - 财政年份:2022
- 资助金额:
$ 15.41万 - 项目类别:
Discovery Grants Program - Individual
Slender body theory and finite difference computations to characterize particle-fluid interactions at moderate Reynolds numbers
细长体理论和有限差分计算来表征中等雷诺数下的颗粒-流体相互作用
- 批准号:
2206851 - 财政年份:2022
- 资助金额:
$ 15.41万 - 项目类别:
Standard Grant
Control Theory and Algorithm Design for Nonlinear Systems Based on Finite Dimensionality of Holonomic Functions
基于完整函数有限维的非线性系统控制理论与算法设计
- 批准号:
22K17855 - 财政年份:2022
- 资助金额:
$ 15.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Galois module theory for curves over finite fields
有限域上曲线的伽罗瓦模理论
- 批准号:
2751003 - 财政年份:2022
- 资助金额:
$ 15.41万 - 项目类别:
Studentship
Representations of finite reductive groups, character sheaves and theory of total positivity
有限约简群的表示、特征轮和总正性理论
- 批准号:
2153741 - 财政年份:2022
- 资助金额:
$ 15.41万 - 项目类别:
Standard Grant
Theory and Applications of the empirical likelihood and finite mixture model
经验似然和有限混合模型的理论与应用
- 批准号:
RGPIN-2019-04204 - 财政年份:2022
- 资助金额:
$ 15.41万 - 项目类别:
Discovery Grants Program - Individual
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2022
- 资助金额:
$ 15.41万 - 项目类别:
Discovery Grants Program - Individual