Direct Phase-Resolved Simulation of Wind-Waves
风波的直接相位解析模拟
基本信息
- 批准号:1341063
- 负责人:
- 金额:$ 19.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-03-18 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual merit: The wind-wave problem is a classic subject in physical oceanography and fluid mechanics with many important applications. The objective of this study is to develop a wave-phase-resolved numerical capability for the simulation of wind-waves under moderate sea conditions, to investigate the interaction between the wind and waves, to effectively capture the effect of wave breaking dissipation in the wave simulation, and to perform simulation-based study of the dynamic evolution of wind-waves. The study aims at establishing a framework for physics-based fine-resolution simulation of wind-waves that can be used by theoretical, numerical, and experimental studies for model development and cross comparison.The simulation builds on a suite of advanced numerical methods including a high-order spectral method (HOSM) for nonlinear waves, large-eddy simulation (LES) with advanced subgrid-scale (SGS) models for wind turbulence on boundary-fitted grid that follows the wave motion, and, as an auxiliary tool, a hybrid multi-fluid simulation (HMFS) method for steep and breaking waves. The wind simulation will be dynamically coupled with the wave simulation with two-way interactions. From the HOSM simulation, the wave field will provide a realistic bottom boundary condition for the wind LES. Using a new dynamic SGS sea-surface roughness model, the effect of short gravity waves on the wind will be modeled without ad hoc tuning of the model coefficient. In return, the wind LES will provide wind forcing for the HOSM simulation of the waves. Using wave breaking models, which will be assessed and calibrated with the auxiliary HMFS of steep and breaking waves, wave breaking dissipation will also be taken into account in the HOSM. As such, the processes of wind input, nonlinear wave interaction, and wave breaking dissipation will all be incorporated to the phase-resolved simulation of the wave field for the first time. Systematic tests and extensive comparisons with other studies are planned in the proposed project.Some of the proposed computations, such as the wind LES over dynamically-evolving nonlinear wave field with dynamic SGS sea-surface roughness modeling, the phase-resolved simulation of nonlinear wave field with direct wind input and modeling of wave breaking dissipation, and the simulation of steep and breaking wind-waves, are the first of their kind. This study will produce detailed data of the interacting wind and wave fields in a wave-phase-resolved context, which can shed new light on the long- standing problem of wind-wave dynamics. The results of the proposed research will be useful for the comparison with experiment measurement and theoretical analysis. The simulation data will also be helpful for the development of improved models for large-scale wave-phase-averaged simulations.Broader impacts: The topic of this study is of interest to the scientific community as well as the general public. The proposed study will lead to improved simulation capability and understanding of wind-waves, which are essential to many applications including weather and climate change, operation and safety of ships and offshore structures, renewable energy, and pollutant transport. In the project, doctoral graduate education will stress multi-disciplinary training with a focus on computation of wave and turbulence problems. Graduate student recruiting and mentoring will leverage an NSF IGERT project on modeling complex systems awarded to JHU. The IGERT project places emphasis on training in high-performance computation of multi-scale multi-physics problems for domestic doctoral students, especially under-represented minorities, women, and first-generation students. Educational outreach will be facilitated by the Center for Educational Outreach at JHU, through which the PI will work with local Baltimore high schools to expose high school students, especially those from underserved communities, to university research and to inspire them to pursue higher education and careers in science and engineering.
知识价值:风浪问题是物理海洋学和流体力学中的一个经典课题,具有许多重要应用。本研究的目的是发展一种波浪相位分辨的数值模拟能力,用于模拟中等海况下的风浪,研究风浪之间的相互作用,有效地捕捉波浪模拟中波浪破碎耗散的影响,并进行基于模拟的风浪动态演化研究。该研究旨在建立一个基于物理的风浪精细分辨率模拟框架,可用于理论,数值和实验研究,用于模型开发和交叉比较。模拟建立在一套先进的数值方法基础上,包括非线性波的高阶谱方法(HOSM),大涡模拟(LES)与先进的亚网格尺度(SGS)模型的风湍流的边界拟合网格,遵循波浪运动,并作为一种辅助工具,陡波和破碎波的混合多流体模拟方法。风模拟将与波浪模拟动态耦合,具有双向交互作用。根据HOSM模拟,波场将为风LES提供真实的底部边界条件。使用一个新的动态SGS海面粗糙度模式,短期重力波对风的影响将模拟没有特设的调整模型系数。反过来,风LES将为波浪的HOSM模拟提供风强迫。使用波浪破碎模型(将使用陡波和破碎波的辅助HMFS进行评估和校准),在HOSM中还将考虑波浪破碎耗散。因此,风输入,非线性波浪相互作用和波浪破碎耗散的过程都将被纳入波场的相位分辨模拟的第一次。本项目计划进行系统的试验和与其他研究的广泛比较,其中一些计算方法,如采用动态SGS海面粗糙度模型的动态演变非线性波场的风大涡模拟、直接风输入的非线性波场的相分辨模拟和波浪破碎耗散的模拟、陡波和破碎风浪的模拟等,都是同类研究中的首创。这项研究将产生详细的数据,相互作用的风和波场的波相分辨的背景下,这可以揭示新的光的长期存在的问题,风浪动力学。本文的研究结果将有助于与实验测量和理论分析的比较。模拟数据也将有助于改进模型的开发,用于大规模波相平均模拟。更广泛的影响:这项研究的主题是科学界以及公众感兴趣的。拟议的研究将提高模拟能力和对风浪的理解,这对许多应用至关重要,包括天气和气候变化,船舶和海上结构的操作和安全,可再生能源和污染物运输。在该项目中,博士研究生教育将强调多学科培训,重点是波浪和湍流问题的计算。研究生招聘和指导将利用NSF IGERT项目对授予JHU的复杂系统进行建模。IGERT项目强调为国内博士生,特别是代表性不足的少数民族,妇女和第一代学生提供多尺度多物理问题的高性能计算培训。JHU的教育推广中心将促进教育推广,PI将通过该中心与当地巴尔的摩高中合作,使高中生,特别是来自服务不足社区的高中生,接触大学研究,并激励他们追求高等教育和科学工程职业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lian Shen其他文献
Measurement-Based Numerical Study of the Effects of Realistic Land Topography and Stratification on the Coastal Marine Atmospheric Surface Layer
基于测量的现实陆地地形和分层对沿海海洋大气表层影响的数值研究
- DOI:
10.1007/s10546-018-00423-2 - 发表时间:
2019 - 期刊:
- 影响因子:4.3
- 作者:
Zixuan Yang;Antoni Calderer;Sida He;F. Sotiropoulos;R. Krishnamurthy;L. Leo;H. Fernando;C. Hocut;Lian Shen - 通讯作者:
Lian Shen
An Assessment of Dynamic Subgrid-Scale Sea-Surface Roughness Models
动态亚网格尺度海面粗糙度模型的评估
- DOI:
10.1007/s10494-013-9459-7 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Di Yang;Lian Shen;C. Meneveau - 通讯作者:
C. Meneveau
Coupled fluid-structure interaction simulation of floating offshore wind turbines and waves: a large eddy simulation approach
漂浮式海上风力发电机与波浪的耦合流固耦合模拟:大涡模拟方法
- DOI:
10.1088/1742-6596/524/1/012091 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Antoni Calderer;Xin Guo;Lian Shen;F. Sotiropoulos - 通讯作者:
F. Sotiropoulos
Simulation and evaluation of rupturable coated capsules by finite element method
可破裂包衣胶囊的有限元模拟与评价
- DOI:
10.1016/j.ijpharm.2017.01.027 - 发表时间:
2017 - 期刊:
- 影响因子:5.8
- 作者:
Yan Yang;Jie Fang;Lian Shen;Weiguang Shan - 通讯作者:
Weiguang Shan
High-Fidelity Simulation and Novel Data Analysis of the Bubble Creation and Sound Generation Processes in Breaking Waves
破碎波浪中气泡产生和声音产生过程的高保真模拟和新颖数据分析
- DOI:
10.48550/arxiv.2211.03024 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Q. Gao;G. Deane;Saswata Basak;Umberto Bitencourt;Lian Shen - 通讯作者:
Lian Shen
Lian Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lian Shen', 18)}}的其他基金
Collaborative Research: Experimental and Numerical Studies of the Effects of Wind, Wave Scale, and Salinity on Bubble Entrainment by Breaking Waves
合作研究:风、波浪尺度和盐度对破碎波夹带气泡影响的实验和数值研究
- 批准号:
2220898 - 财政年份:2022
- 资助金额:
$ 19.52万 - 项目类别:
Standard Grant
Collaborative Research: An Experimental and Modeling Study of Inverse-Temperature Layer and Its Effect on Evaporation over Water Surfaces
合作研究:逆温层及其对水面蒸发影响的实验和模型研究
- 批准号:
2003076 - 财政年份:2020
- 资助金额:
$ 19.52万 - 项目类别:
Standard Grant
Collaborative Research: Bridging the Gap Between Particle-Scale Thermal - - Transport and Device-scale Predictions
合作研究:弥合粒子尺度热传输和设备尺度预测之间的差距
- 批准号:
1903564 - 财政年份:2019
- 资助金额:
$ 19.52万 - 项目类别:
Standard Grant
Collaborative Research: Mechanisms of Droplet Generation by Breaking Wind Waves, Experiments and Numerical Simulations
合作研究:破碎风浪产生液滴的机制、实验和数值模拟
- 批准号:
1924799 - 财政年份:2019
- 资助金额:
$ 19.52万 - 项目类别:
Standard Grant
Study of The Fundamental Dynamics of Water Wave Effects on Turbulence for Environmental Applications
环境应用中水波对湍流影响的基本动力学研究
- 批准号:
1605080 - 财政年份:2016
- 资助金额:
$ 19.52万 - 项目类别:
Standard Grant
Computation of marine atmospheric boundary layer and nonlinear ocean wavefield for energy for sustainability
计算海洋大气边界层和非线性海洋波场以实现可持续能源
- 批准号:
1341062 - 财政年份:2013
- 资助金额:
$ 19.52万 - 项目类别:
Standard Grant
Direct Phase-Resolved Simulation of Wind-Waves
风波的直接相位解析模拟
- 批准号:
1155638 - 财政年份:2012
- 资助金额:
$ 19.52万 - 项目类别:
Standard Grant
Computation of marine atmospheric boundary layer and nonlinear ocean wavefield for energy for sustainability
计算海洋大气边界层和非线性海洋波场以实现可持续能源
- 批准号:
1133700 - 财政年份:2011
- 资助金额:
$ 19.52万 - 项目类别:
Standard Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
Directional Phase-Resolved Broadband Observations of Breaking Waves
碎波的定向相位分辨宽带观测
- 批准号:
2319116 - 财政年份:2023
- 资助金额:
$ 19.52万 - 项目类别:
Standard Grant
Development of time-resolved rheological techniques using impact shear cells for study of phase transitions in non-Newtonian fluids
使用冲击剪切池开发时间分辨流变技术来研究非牛顿流体中的相变
- 批准号:
23K13243 - 财政年份:2023
- 资助金额:
$ 19.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
LEAPS-MPS: Time- and depth-resolved charge carrier transport in phase stable hybrid perovskites
LEAPS-MPS:相稳定杂化钙钛矿中的时间和深度分辨载流子传输
- 批准号:
2316827 - 财政年份:2023
- 资助金额:
$ 19.52万 - 项目类别:
Standard Grant
Time-domain measurement of photoelemission process using phase-resolved photoelectron spectroscopy
使用相分辨光电子能谱对光电子过程进行时域测量
- 批准号:
23K17671 - 财政年份:2023
- 资助金额:
$ 19.52万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Hierarchical structure change induced by the phase transition in polymers investigated by broadband phase-resolved spectroscopy
通过宽带相分辨光谱研究聚合物相变引起的分级结构变化
- 批准号:
22K03557 - 财政年份:2022
- 资助金额:
$ 19.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comparison of 3D phase-resolved functional lung (PREFUL) and Hyperpolarized Xenon Gas Magnetic Resonance Imaging (MRI) Ventilation Distributions in Pediatric Cystic Fibrosis Lung Disease
3D 相位分辨功能性肺 (PREFUL) 和超极化氙气磁共振成像 (MRI) 通气分布在小儿囊性纤维化肺病中的比较
- 批准号:
559116-2021 - 财政年份:2022
- 资助金额:
$ 19.52万 - 项目类别:
Postgraduate Scholarships - Doctoral
Time-resolved Intramolecular Photoelectron Diffraction (TIPD) of Ions in the Gas-phase
气相离子的时间分辨分子内光电子衍射 (TIPD)
- 批准号:
EP/V047787/1 - 财政年份:2021
- 资助金额:
$ 19.52万 - 项目类别:
Research Grant
SBIR Phase I: Development of New Time and Spatially-Resolved, Near-Infrared Photoluminescence Techniques Detecting Trapped Charge in Inorganic Sediments for Geochronology Dating
SBIR 第一阶段:开发新的时间和空间分辨近红外光致发光技术,检测无机沉积物中的俘获电荷以进行地质年代测定
- 批准号:
2126530 - 财政年份:2021
- 资助金额:
$ 19.52万 - 项目类别:
Standard Grant
Comparison of 3D phase-resolved functional lung (PREFUL) and Hyperpolarized Xenon Gas Magnetic Resonance Imaging (MRI) Ventilation Distributions in Pediatric Cystic Fibrosis Lung Disease
3D 相位分辨功能性肺 (PREFUL) 和超极化氙气磁共振成像 (MRI) 通气分布在小儿囊性纤维化肺病中的比较
- 批准号:
559116-2021 - 财政年份:2021
- 资助金额:
$ 19.52万 - 项目类别:
Postgraduate Scholarships - Doctoral
In vivo Imaging and Quantification of Cilia Beating Dynamics Using Phase-Resolved Optical Imaging Technology
使用相位分辨光学成像技术对纤毛跳动动力学进行体内成像和量化
- 批准号:
10201599 - 财政年份:2020
- 资助金额:
$ 19.52万 - 项目类别: