West Coast Algebraic Topology Summer School

西海岸代数拓扑暑期学校

基本信息

  • 批准号:
    1341251
  • 负责人:
  • 金额:
    $ 9.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

This award will fund the West Coast Algebraic Topology Summer School, a series of programs in the summers from 2013-2016 aimed at early-career mathematicians who work in algebraic topology and related areas. The programs will actively engage the participants, and alternate between larger and smaller scale. In the larger week-long programs, aiming for between 50 and 100 participants, a large organizing committee will plan lectures which some participants will prepare and then present. There will only be about 15 lectures for the week, leaving time for participants to work on problems formulated by the organizing committee, to ask questions of each other (especially the presenters) and the organizers, to read supporting materials and go over their own notes, to talk informally with each other about their work related to the program, etc. The smaller three-day programs will be primarily organized by graduate students from institutions providing both in-kind and additional financial support, namely Stanford University, the University of Oregon, the University of Washington, and the University of British Columbia. In September 6-8, 2013 at the University of Oregon the program will be on Infinity Categories, a topic which has recently become a key technical piece of some of the most significant recent breakthroughs in algebraic topology and its applications to algebraic geometry and geometric topology. With the upcoming yearlong program at the Mathematical Sciences Research Institute in Berkeley, the student organizers have chosen to learn about arguably the most important new machinery developed in the subject in recent years. In July 2014, the week-long program at the University of British Columbia (with significant additional financial and in-kind support from the Pacific Institute for the Mathematical Sciences), the program will be on Topological Field Theories. Development of these theories requires interplay both between the mathematics and physics communities, and within mathematics between algebraic topologists, geometric topologists, differential geometers, and representation theorists among others. A program designed to address the different aspects of the theory while being coherent will aid a generation of researchers in interfacing with a remarkably fruitful subfield. The topics in 2015 and 2016 will continue to be chosen based on their importance and timeliness and connections with other fields. The 2016 program will likely focus on Chromatic Homotopy Theory, while determining the topic for the 2015 program will involve the participants. At all of these programs, we will have additional opportunities for professional learning addressing needs for early-career mathematicians to develop as teachers and to position themselves for career growth.Knowledge of topology is essential for example in studying the structure of the early universe, in designing a robot arm with a minimal number of controllers, and in new kinds of data analysis. In its role as a basic study of shape, algebraic topology has significant ramifications in other areas of mathematics, from basic counting problems (combinatorics) to solutions of equations (algebra) to applications and extensions of the calculus (analysis). The West Coast Algebraic Topology Summer School chooses topics with such connections in mind. Early career mathematicians have a great need for research-level professional learning, which can open up new research pathways, and for enlarging their professional networks, which can open up new collaborations. Without such early-career opportunities, research programs can narrow or stall out altogether. These needs can be more prominent for early career mathematicians in the western half of the United States, which is more geographically isolated than other regions, and for mathematicians from under-represented groups, who are actively recruited to be participants. These summer schools build on a series of successful programs which have exceeded expectations in both the depth of learning and the strength of professional relationships fostered. Many participants have reported them to be transformative experiences, and we expect those kinds of experiences to continue in our series from 2013-2016. The active learning aspects of these experiences inform not only the research programs of participants but their approach to pedagogy as well. Thus the program's impact goes beyond mathematical and scientific research to postsecondary and even K-12 education.
该奖项将资助西海岸代数拓扑暑期学校,这是 2013 年至 2016 年夏季的一系列项目,面向从事代数拓扑及相关领域工作的早期职业数学家。 这些项目将积极吸引参与者,并在较大和较小的规模之间交替。 在为期一周的大型项目中,目标是 50 到 100 名参与者,大型组委会将计划讲座,由一些参与者准备然后进行演示。 每周只有大约 15 场讲座,让参与者有时间讨论组委会提出的问题,向彼此(尤其是演讲者)和组织者提出问题,阅读辅助材料并复习自己的笔记,相互非正式地讨论与该项目相关的工作等。较小的为期三天的项目将主要由来自提供实物和额外财政支持的机构的研究生组织,即斯坦福大学、 俄勒冈大学、华盛顿大学和不列颠哥伦比亚大学。 2013 年 9 月 6 日至 8 日,俄勒冈大学的课程主题为“无穷范畴”,该主题最近已成为代数拓扑及其在代数几何和几何拓扑中的应用的一些最重大突破的关键技术部分。 随着伯克利数学科学研究所即将开展的为期一年的项目,学生组织者选择了解近年来该学科开发的可以说是最重要的新机器。 2014 年 7 月,不列颠哥伦比亚大学为期一周的课程(得到了太平洋数学科学研究所的大量额外财政和实物支持),该课程将讨论拓扑场论。 这些理论的发展需要数学界和物理学界之间的相互作用,以及代数拓扑学家、几何拓扑学家、微分几何学家和表示理论学家之间的相互作用。 一个旨在解决该理论的不同方面并保持连贯性的程序将帮助一代研究人员与一个非常富有成效的子领域建立联系。 2015年和2016年的主题将继续根据其重要性、时效性以及与其他领域的联系来选择。 2016年的项目可能会集中于色同伦理论,而2015年项目的主题将由参与者确定。在所有这些项目中,我们将有更多的专业学习机会,满足早期职业数学家作为教师发展和为职业发展定位的需求。拓扑知识对于研究早期宇宙的结构、设计具有最少数量控制器的机器人手臂以及新型数据分析至关重要。 作为形状的基础研究,代数拓扑在数学的其他领域具有重要的影响,从基本的计数问题(组合学)到方程的解(代数)到微积分的应用和扩展(分析)。 西海岸代数拓扑暑期学校选择的主题就考虑到了这种联系。 早期职业数学家非常需要研究水平的专业学习,这可以开辟新的研究途径,并扩大他们的专业网络,这可以开辟新的合作。 如果没有这样的早期职业机会,研究项目可能会缩小或完全停滞。 对于美国西半部的早期职业数学家来说,这些需求可能更为突出,因为美国西半部在地理上比其他地区更加偏僻,而对于来自代表性不足群体的数学家来说,他们被积极招募为参与者。 这些暑期学校建立在一系列成功项目的基础上,这些项目在学习深度和培养的专业关系强度方面都超出了预期。 许多参与者表示这些经历是变革性的经历,我们预计这些经历将在 2013 年至 2016 年的系列中继续下去。 这些经历的主动学习方面不仅为参与者的研究计划提供了信息,也为他们的教学方法提供了信息。 因此,该计划的影响超越了数学和科学研究,延伸到高等教育甚至 K-12 教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dev Sinha其他文献

Bordism of semi-free S1-actions
半自由 S1 作用的配边
  • DOI:
    10.1007/s00209-004-0707-3
  • 发表时间:
    2004-08-10
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Dev Sinha
  • 通讯作者:
    Dev Sinha

Dev Sinha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dev Sinha', 18)}}的其他基金

West Coast Algebraic Topology Summer School
西海岸代数拓扑暑期学校
  • 批准号:
    1106865
  • 财政年份:
    2011
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
Group cohomology, rational homotopy theory, and related topics
群上同调、有理同伦理论及相关主题
  • 批准号:
    1006819
  • 财政年份:
    2010
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
SM: West Coast Algebraic Topology Summer School
SM:西海岸代数拓扑暑期学校
  • 批准号:
    0963813
  • 财政年份:
    2010
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
Homotopy Methods in Knot Theory
结理论中的同伦方法
  • 批准号:
    0405922
  • 财政年份:
    2004
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant

相似海外基金

Postdoctoral Fellowship: CREST-PRP: Exploring the Impact of Heat-Waves and Nutrients on Bloom-Forming and Habitat-Building Seaweeds Along the South Florida Coast
博士后奖学金:CREST-PRP:探索热浪和营养物质对南佛罗里达海岸海藻形成和栖息地建设的影响
  • 批准号:
    2401066
  • 财政年份:
    2024
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
Collaborative Research: IMPLEMENTATION: C-COAST: Changing the Culture of our Occupations to Achieve Systemic Transformation
合作研究:实施:C-COAST:改变我们的职业文化以实现系统转型
  • 批准号:
    2422305
  • 财政年份:
    2024
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
C2H2 RCN: Water Security and Health of Private Well Users in the Gulf Coast
C2H2 RCN:墨西哥湾沿岸私人水井用户的水安全和健康
  • 批准号:
    2420817
  • 财政年份:
    2024
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
Yorkshire Coast Community Research Network
约克郡海岸社区研究网络
  • 批准号:
    10051676
  • 财政年份:
    2023
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Feasibility Studies
Hindu-Muslim-Jewish Origin Legends in Circulation between the Malabar Coast and the Mediterranean, 1400s-1800s
马拉巴尔海岸和地中海之间流传的印度教、穆斯林和犹太教起源传说,1400 年代至 1800 年代
  • 批准号:
    AH/X002136/1
  • 财政年份:
    2023
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Research Grant
Environmental monitoring and marine ecosystem modelling of a coastal socio-ecological system on the Sanriku Coast
三陆海岸沿海社会生态系统的环境监测和海洋生态系统建模
  • 批准号:
    23H02230
  • 财政年份:
    2023
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: IMPLEMENTATION: C-COAST: Changing the Culture of our Occupations to Achieve Systemic Transformation
合作研究:实施:C-COAST:改变我们的职业文化以实现系统转型
  • 批准号:
    2233701
  • 财政年份:
    2023
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
Collaborative Research: IMPLEMENTATION: C-COAST: Changing the Culture of our Occupations to Achieve Systemic Transformation
合作研究:实施:C-COAST:改变我们的职业文化以实现系统转型
  • 批准号:
    2233699
  • 财政年份:
    2023
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
CAREER: CAS-Climate: Environmental Sustainability of Combined versus Separate Sewer Systems along the U.S. West Coast
职业:CAS-气候:美国西海岸联合下水道系统与独立下水道系统的环境可持续性
  • 批准号:
    2239602
  • 财政年份:
    2023
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMPLEMENTATION: C-COAST: Changing the Culture of our Occupations to Achieve Systemic Transformation
合作研究:实施:C-COAST:改变我们的职业文化以实现系统转型
  • 批准号:
    2233702
  • 财政年份:
    2023
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了