Group cohomology, rational homotopy theory, and related topics
群上同调、有理同伦理论及相关主题
基本信息
- 批准号:1006819
- 负责人:
- 金额:$ 12.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI, Dev Sinha, proposes to investigate a wide range of topics in algebraic topology. He will make further calculations in the cohomology of symmetric groups. He will compute equivariant cohomology and K-theory of divided powers constructions and then extend them to orbifold cohomology and K-theory. He will develop and compute Hopf ring structures on cohomology, representation theory and suitable invariants of series of groups. He will unify integrals from Chern-Simons with the Lie coalgebraic model of homotopy theory to develop complete rational homotopy invariants of maps. He will generalize the Magnus expansion and use that to model non-simply connected spaces.Topology is a fundamental study of shape, and thus has its roots in geometry. As a subject it has roughly split into point-set topology which considers foundational questions, geometric topology which studies particular shapes such as that of our universe, and algebraic topology which ultimately relates shape to numerical data. It is not typical for researchers to bridge thees communities. In his previously funded research, the PI applied methods from algebraic topology to knot theory, which is squarely in the geometric realm. In this proposal, the PI is using insight from the geometric study of configuration spaces (collections of particles) to better understand algebraic structures such as symmetric groups and symmetric functions. He also plans to connect algebraic topology with Chern-Simons theory from mathematical physics, and to develop a theory of "linking of letters" to answer basic questions in group theory.
PI,Dev Sinha,提议研究代数拓扑中的广泛主题。他将进一步计算对称群的上同调。 他将计算等变上同调和K-理论的划分权力建设,然后将其扩展到orbifold上同调和K-理论。 他将开发和计算的上同调,代表性理论和适当的不变量的一系列群体的霍普夫环结构。 他将把陈-西蒙斯的积分与同伦理论的李余代数模型统一起来,以开发地图的完整有理同伦不变量。 他将推广马格努斯展开式,并使用它来模拟非单连通空间。拓扑学是形状的基础研究,因此它的根源在几何学。 作为一个主题,它已大致分为点集拓扑考虑的基础问题,几何拓扑研究特定的形状,如我们的宇宙,和代数拓扑最终涉及形状的数值数据。 研究人员在社区之间架起桥梁并不常见。 在他以前资助的研究中,PI应用了从代数拓扑到结理论的方法,这完全属于几何领域。 在该提案中,PI利用配置空间(粒子集合)几何研究的洞察力来更好地理解对称群和对称函数等代数结构。 他还计划将代数拓扑学与数学物理学中的陈-西蒙斯理论联系起来,并发展一种“字母连接”理论来回答群论中的基本问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dev Sinha其他文献
Bordism of semi-free S1-actions
半自由 S1 作用的配边
- DOI:
10.1007/s00209-004-0707-3 - 发表时间:
2004-08-10 - 期刊:
- 影响因子:1.000
- 作者:
Dev Sinha - 通讯作者:
Dev Sinha
Dev Sinha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dev Sinha', 18)}}的其他基金
West Coast Algebraic Topology Summer School
西海岸代数拓扑暑期学校
- 批准号:
1341251 - 财政年份:2013
- 资助金额:
$ 12.89万 - 项目类别:
Continuing Grant
West Coast Algebraic Topology Summer School
西海岸代数拓扑暑期学校
- 批准号:
1106865 - 财政年份:2011
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant
SM: West Coast Algebraic Topology Summer School
SM:西海岸代数拓扑暑期学校
- 批准号:
0963813 - 财政年份:2010
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant
相似国自然基金
Deligne-Mumford模空间的拓扑和二维orbifold的弦理论研究
- 批准号:10401026
- 批准年份:2004
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
- 批准号:
2340239 - 财政年份:2024
- 资助金额:
$ 12.89万 - 项目类别:
Continuing Grant
Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
- 批准号:
23K03029 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symplectic cohomology and quantum cohomology of Fano manifolds
Fano流形的辛上同调和量子上同调
- 批准号:
2306204 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
- 批准号:
23H00083 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Cohomology theories for algebraic varieties
代数簇的上同调理论
- 批准号:
2883661 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Studentship
LEAPS-MPS: Quantum Field Theories and Elliptic Cohomology
LEAPS-MPS:量子场论和椭圆上同调
- 批准号:
2316646 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant
Cohomology of arithmetic groups in GL(2) over definite quaternion algebras
GL(2) 定四元数代数上算术群的上同调
- 批准号:
2884658 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Studentship
Koszul duality and the singularity category for the enhanced group cohomology ring
增强群上同调环的 Koszul 对偶性和奇点范畴
- 批准号:
EP/W036320/1 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Research Grant
Dual complexes and weight filtrations: Applications to cohomology of moduli spaces and invariants of singularities
对偶复形和权重过滤:模空间上同调和奇点不变量的应用
- 批准号:
2302475 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Continuing Grant
Matrix Approximations, Stability of Groups and Cohomology Invariants
矩阵近似、群稳定性和上同调不变量
- 批准号:
2247334 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant