SNM: Scalable and Sustainable Hydrothermal Manufacturing of Nano-array based Low Temperature Diesel Oxidation Catalysts

SNM:基于纳米阵列的低温柴油氧化催化剂的可扩展且可持续的水热制造

基本信息

  • 批准号:
    1344792
  • 负责人:
  • 金额:
    $ 145.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-10-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

CMMI-1344792Pu-Xian Gao, Tianfeng Lu, Zhuyin Ren, and Steven SuibUniversity of Connecticut Hydrothermal processing has emerged as a potentially economic method for nanomanufacturing, due to energy saving, cost effectiveness, simplicity and low operation temperature (LOT). However, the scientific nature of hydrothermal processing remains elusive, particularly on the spatial distribution of nanostructure nucleation and growth, patterning and self-assembly into device forms, which directly impact the assembly (device) yield, growth rate, uniformity, and batch-to-batch repeatability. The goal of this project is to design and validate an external-energy-field assisted flow hydrothermal manufacturing technique for continuous, scalable and sustainable syntheses of a new class of monolithic catalysts, based on three-dimensional (3-D) nanostructure arrays (nano-array), for low temperature catalytic diesel oxidation, and to understand the underlying mass transport and growth reaction chemistry. With well-defined size, shape and orientation, nano-arrays on monoliths will be synthesized based on selective metal oxides, targeting from the lab-scale, large-scale, to industrially relevant manufacturing stages. Both stirred batch and continuous flow reactor techniques will be systematically studied in combination with production-rate-acceleration external energies such as electrical fields, microwaves and ultrasonic radiation. Computational fluid dynamics will be used to design and optimize catalysts based on theoretical analyses and numerical modeling using. Detailed flow field distributions, chemical kinetics, and experimental validation will guide the design and control of the field-assisted growth reactors. Various metal doping will be conducted on the nano-arrays to enable LOT activity and selectivity for catalytic diesel oxidations. These structured nanocatalysts will be tested and validated as low temperature diesel oxidation catalysts (DOC) for hydrocarbon and nitrogen oxide oxidations.This project will provide new insights on the thermodynamic, transport and growth behavior of nanomaterial assemblies at a 3-D monolithic device/system level, as accelerated by external energy field implementation. The resulting structured nanocatalysts will provide a much needed class of LOT DOCs for the automotive industry, and will directly impact the fuel economy, energy and environmental sustainability. Such arrays will also provide a unique device platform applicable in chemical, mechanical, and biotechnology industries. The complementary experimental and modeling study for hydrothermal manufacturing could be applied to other nanomanufacturing cases involving solution or gas phases. This project emphasizes interdisciplinary education and training involving materials science, chemical engineering, chemistry, and mechanical engineering, as well as the strong industrial partnerships with United Technologies Corporation, Umicore, VeruTEK, and ANSYS. A summer workshop on "Advanced Nanomaterials: Manufacturing and Processing" will be hosted every year by the PIs and industrial partners, targeting community college students and high school teachers, who will eventually influence a number of underrepresented minority students, forming a potential workforce for nanomanufacturing industry of the future. A summer lab course will be held for K-12 students in the Kids Are Scientists Too Program. A ?Nano-Array Catalysts? theme website will be created to disseminate information from this project with a separate access set up for the general public. In the third year of the project an international conference will be held on ?Catalytic Nanomaterials Manufacturing? at UCONN.
CMMI-1344792 Pu-Xian Gao,Tianfeng Lu,Zhuyin Ren,and Steven Suib康涅狄格大学水热处理由于节能、成本效益、简单和低操作温度(LOT)而成为纳米制造的潜在经济方法。然而,水热处理的科学性质仍然难以捉摸,特别是在纳米结构成核和生长、图案化和自组装成器件形式的空间分布上,其直接影响组件(器件)产率、生长速率、均匀性和批次间可重复性。该项目的目标是设计和验证一种外部能量场辅助流动水热制造技术,用于基于三维(3-D)纳米结构阵列(纳米阵列)的新型整体式催化剂的连续,可扩展和可持续合成,用于低温催化柴油氧化,并了解潜在的质量传输和生长反应化学。具有明确定义的尺寸,形状和取向,单片纳米阵列将基于选择性金属氧化物合成,目标从实验室规模,大规模到工业相关的制造阶段。搅拌分批和连续流动反应器技术将结合生产率加速外部能量,如电场,微波和超声辐射进行系统研究。计算流体动力学将用于设计和优化催化剂的理论分析和数值模拟的基础上使用。详细的流场分布,化学动力学和实验验证将指导场辅助生长反应器的设计和控制。将在纳米阵列上进行各种金属掺杂,以实现催化柴油氧化的LOT活性和选择性。这些结构化的纳米催化剂将作为碳氢化合物和氮氧化物氧化的低温柴油氧化催化剂(DOC)进行测试和验证。该项目将在3-D单片设备/系统水平上提供有关纳米材料组件的热力学,运输和生长行为的新见解,并通过外部能量场的实施来加速。由此产生的结构化纳米催化剂将为汽车工业提供急需的LOT DOC,并将直接影响燃油经济性,能源和环境可持续性。这样的阵列还将提供一个独特的设备平台,适用于化学,机械和生物技术行业。水热制造的补充实验和建模研究可以应用于其他涉及溶液或气相的纳米制造案例。该项目强调跨学科教育和培训,涉及材料科学,化学工程,化学和机械工程,以及与联合技术公司,优美科,VeruTEK和ANSYS的强大工业合作伙伴关系。PI和工业合作伙伴每年都会举办一次关于“先进纳米材料:制造和加工”的夏季研讨会,目标群体是社区大学生和高中教师,他们最终将影响一些代表性不足的少数族裔学生,形成纳米制造业的潜在劳动力未来。暑期实验室课程将为K-12学生在孩子们也是科学家计划。一个?纳米阵列催化剂?将建立一个主题网站,以传播该项目的信息,并为公众建立一个单独的访问。在项目的第三年,将举行一次国际会议?催化纳米材料制造在康州大学

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
NiO nanosheet array integrated monoliths for low temperature catalytic propane oxidation: A study on the promotion effect of Ce doping
  • DOI:
    10.1016/j.cattod.2020.07.086
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Wenxiang Tang;Xingxu Lu;J. Weng;P. Gao
  • 通讯作者:
    Wenxiang Tang;Xingxu Lu;J. Weng;P. Gao
Mass transport in nanoarray monolithic catalysts: An experimental-theory study
  • DOI:
    10.1016/j.cej.2020.126906
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Xingxu Lu;Wenxiang Tang;Meilin Li;Yanliu Dang;Norwyn Campbell;Zihao Li;S. Suib;P. Gao
  • 通讯作者:
    Xingxu Lu;Wenxiang Tang;Meilin Li;Yanliu Dang;Norwyn Campbell;Zihao Li;S. Suib;P. Gao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pu-Xian Gao其他文献

Multiple strategies to decrease ignition temperature for soot combustion on ultrathin MnO2−x nanosheet array
降低超薄 MnO2·x 纳米片阵列烟灰燃烧着火温度的多种策略
  • DOI:
    10.1016/j.apcatb.2018.12.078
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiaolan Shi;Taizheng Liu;Qian Li;Ying Xin;Xingxu Lu;Wenxiang Tang;Zhaoliang Zhang;Pu-Xian Gao;James A. Anderson
  • 通讯作者:
    James A. Anderson
Robust and well-controlled TiO2–Al2O3 binary nanoarray-integrated ceramic honeycomb for efficient propane combustion
坚固且控制良好的 TiO2-Al2O3 二元纳米阵列集成陶瓷蜂窝,可实现丙烷的高效燃烧
  • DOI:
    10.1039/c8ce02012d
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Juxia Xiong;Zhu Luo;Ji Yang;Yanbing Guo;Adimali Piyadasa;Sibo Wang;Son Hoang;Yarong Fang;Siyu Hu;Weiwei Yang;Hongtao Deng;Lizhi Zhang;Pu-Xian Gao
  • 通讯作者:
    Pu-Xian Gao
Perovskite evolution on La modified Mnsub1.5/subCosub1.5/subOsub4/sub spinel through thermal ageing with enhanced oxidation activity: Is sintering always an issue?
通过热老化在 La 改性的 Mn₁.₅Co₁.₅O₄尖晶石上的钙钛矿演变及其增强的氧化活性:烧结总是一个问题吗?
  • DOI:
    10.1016/j.cej.2023.147073
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
    13.200
  • 作者:
    Wenxiang Tang;Chi Zhang;Yijia Cao;Fangyuan Liu;Junfei Weng;Xingxu Lu;Yanliu Dang;Chang-Yong Nam;Steven L. Suib;Pu-Xian Gao
  • 通讯作者:
    Pu-Xian Gao
Optimization and understanding of ZnO nanoarray supported Cu-ZnO-Alsub2/subOsub3/sub catalyst for enhanced COsub2/sub -methanol conversion at low temperature and pressure
优化和理解用于在低温和低压下增强二氧化碳-甲醇转化的 ZnO 纳米阵列负载的 Cu-ZnO-Al₂O₃催化剂
  • DOI:
    10.1016/j.cej.2022.140559
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    13.200
  • 作者:
    Jiyu Sun;Fangyuan Liu;Usman Salahuddin;Mudi Wu;Chunxiang Zhu;Xingxu Lu;Bo Zhang;Binchao Zhao;Zhiqiang Xie;Yunjiang Ding;Dongsheng Li;Chang-Yong Nam;Feng-Yuan Zhang;Pu-Xian Gao
  • 通讯作者:
    Pu-Xian Gao
Quasi free K cations confined in hollandite-type tunnels for catalytic solid (catalyst)-solid (reactant) oxidation reactions
准游离 K 阳离子被限制在菱铁矿型隧道中,用于催化固体(催化剂)-固体(反应物)氧化反应
  • DOI:
    10.1016/j.apcatb.2018.03.049
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taizheng Liu;Qian Li;Ying Xin;Zhaoliang Zhang;Xingfu Tang;Lirong Zheng;Pu-Xian Gao
  • 通讯作者:
    Pu-Xian Gao

Pu-Xian Gao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pu-Xian Gao', 18)}}的其他基金

PFI-RP: Multifunctional Nanoarray Adsorbers for Low Temperature Automotive Emission Control
PFI-RP:用于低温汽车排放控制的多功能纳米阵列吸附器
  • 批准号:
    1919231
  • 财政年份:
    2019
  • 资助金额:
    $ 145.02万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Developing the world’s 1st scalable, end-to-end system for cost-efficient, sustainable cultivated pork meat production
开发世界上第一个可扩展的端到端系统,以实现经济高效、可持续的养殖猪肉生产
  • 批准号:
    10079403
  • 财政年份:
    2024
  • 资助金额:
    $ 145.02万
  • 项目类别:
    Collaborative R&D
SBIR Phase II: CAS: Advanced Scalable and Sustainable Waste Disposal System
SBIR 第二阶段:CAS:先进的可扩展且可持续的废物处理系统
  • 批准号:
    2303791
  • 财政年份:
    2023
  • 资助金额:
    $ 145.02万
  • 项目类别:
    Cooperative Agreement
Using Multiphase Optimization Strategy (MOST) to Optimize a Cost-effective, Sustainable and Scalable Smoking Cessation Package for Smokers in HIV Clinical Care
使用多阶段优化策略 (MOST) 为 HIV 临床护理中的吸烟者优化具有成本效益、可持续且可扩展的戒烟方案
  • 批准号:
    10548592
  • 财政年份:
    2022
  • 资助金额:
    $ 145.02万
  • 项目类别:
Scalable synthesis of sustainable biosourced carbon coatings for next-generation lithium-ion battery natural graphite anodes
用于下一代锂离子电池天然石墨阳极的可持续生物来源碳涂层的可扩展合成
  • 批准号:
    570885-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 145.02万
  • 项目类别:
    Alliance Grants
Enhancing Grid-Scalable Battery Technologies by Tethering Active Species to Sustainable Carbon Nanoparticles
通过将活性物质与可持续碳纳米粒子结合来增强电网可扩展电池技术
  • 批准号:
    568709-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 145.02万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Using Multiphase Optimization Strategy (MOST) to Optimize a Cost-effective, Sustainable and Scalable Smoking Cessation Package for Smokers in HIV Clinical Care
使用多阶段优化策略 (MOST) 为 HIV 临床护理中的吸烟者优化具有成本效益、可持续且可扩展的戒烟方案
  • 批准号:
    10649607
  • 财政年份:
    2022
  • 资助金额:
    $ 145.02万
  • 项目类别:
Innovating Advanced Battery Expansion for Scalable, Sustainable Minigrids
创新先进的电池扩展,实现可扩展、可持续的迷你电网
  • 批准号:
    75742
  • 财政年份:
    2022
  • 资助金额:
    $ 145.02万
  • 项目类别:
    Feasibility Studies
Fully synthetic animal-free scaffolds: the future of sustainable and scalable organoid culture
全合成的无动物支架:可持续和可扩展的类器官培养的未来
  • 批准号:
    92486
  • 财政年份:
    2021
  • 资助金额:
    $ 145.02万
  • 项目类别:
    Collaborative R&D
SBIR Phase I: Advanced Scalable and Sustainable Waste Disposal System
SBIR 第一阶段:先进的可扩展和可持续的废物处理系统
  • 批准号:
    2125671
  • 财政年份:
    2021
  • 资助金额:
    $ 145.02万
  • 项目类别:
    Standard Grant
Effects of a Novel, Scalable, and Sustainable Patient Portal Intervention on Diabetes-Related Outcomes: A Pragmatic Randomized Controlled Trial
新颖、可扩展且可持续的患者门户干预对糖尿病相关结果的影响:一项务实的随机对照试验
  • 批准号:
    10689128
  • 财政年份:
    2021
  • 资助金额:
    $ 145.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了