Mobility of Pyroclastic Density Currents: Integrating Field and Experimental Techniques to Understand the Controls and Consequences of Erosion

火山碎屑密度流的流动性:结合现场和实验技术来了解侵蚀的控制和后果

基本信息

  • 批准号:
    1347385
  • 负责人:
  • 金额:
    $ 26.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-03-15 至 2018-02-28
  • 项目状态:
    已结题

项目摘要

Pyroclastic density currents (PDCs) are the most dangerous hazard associated with explosive volcanism. These unpredictable currents consist of searing hot clouds of gas, ash and rock that travel down the slopes of erupting volcanoes with tremendous force and velocity. The driving force for these devastating currents is their dense nature (due to the mixture of ash and rock) relative to the ambient air. PDCs will travel across the landscape, potentially many miles beyond the volcano flanks, until the ash and rock within the current has dropped out and the current density decreases to match that of the ambient air. Despite the pervasiveness of PDCs and their deadly consequences, many fundamental aspects of their behavior and controls on runout distance remain poorly understood. One of the most important gaps in our understanding of these currents is the mechanism(s) for eroding into the surface over which a PDC flows, and the influence of mixing substrate material into the current on downstream flow dynamics. Given that the primary control on runout distance is a current?s density relative to the ambient air, bulking of the current due to entrainment of the substrate would influence and possibly extend the ultimate runout distance, thereby increasing destructive potential. This work combines field techniques and scaled laboratory experiments to examine the complex relationships between PDC conditions and erosion, and the consequence of erosion on current mobility.This project will explore the control of three main parameters on a current's ability to erode from the substrate: slope, degree of fluidization (pore pressure), and nature of the substrate (particle size, particle density, thickness of erodible bed and substrate roughness). This work will be conducted in three phases. The first phase includes field studies on the well-exposed PDC deposits from the May 18th, 1980 eruption of Mt St Helens (MSH), which builds on the previous work on these deposits of the lead investigator. Field work includes textural, granulometry and componentry studies to determine (or infer) the source of eroded lithics within the PDC deposits, the substrate conditions that favor erosion (e.g., slope, surface roughness) and the influence of erosion on downstream flow dynamics of the eroding PDCs. The second phase involves scaled experiments to explore the general conditions that favor erosion via shear at the base versus underpressure in the head of fluidized currents, which build on the fundamental work of collaborator Dr. Roche. The third phase includes experiments that specifically explore our interpretations and hypothesis developed from the phase one field results from MSH by assessing (1) the influence of topographic obstacles on erosion and downstream flow dynamics, (2) the role of an increased density gradient on basal shear stress and erosion, and (3) the development of fabric in laboratory flows as a function of degree of fluidization and interaction with obstacles. The ultimate goal is to develop a more comprehensive understanding of the controls on PDC damage potential and runout distance, which will enable better assessments and mitigation of the hazards associated with future explosive eruptions.
火山碎屑密度流(PDCs)是与爆炸性火山活动相关的最危险的危害。这些不可预测的气流由炙热的气体云、火山灰和岩石组成,它们以巨大的力量和速度沿着火山喷发的斜坡流下。这些破坏性气流的驱动力是它们相对于周围空气的密度(由于火山灰和岩石的混合物)。PDCs将穿过地形,可能在火山侧翼数英里之外,直到电流中的火山灰和岩石脱落,电流密度降低到与周围空气的密度相匹配。尽管PDCs的普及及其致命的后果,但它们的行为和对跳动距离的控制的许多基本方面仍然知之甚少。在我们对这些电流的理解中,最重要的一个空白是PDC流过表面的侵蚀机制,以及基材与电流混合对下游流动动力学的影响。假设对跳动距离的主要控制是电流?S密度相对于周围空气,基材夹带导致的电流膨胀会影响并可能延长最终跳动距离,从而增加破坏电位。这项工作结合了现场技术和规模实验室实验,以研究PDC工况与侵蚀之间的复杂关系,以及侵蚀对电流流动性的影响。该项目将探索对电流从基材侵蚀能力的三个主要参数的控制:坡度、流化程度(孔隙压力)和基材性质(粒径、颗粒密度、可蚀层厚度和基材粗糙度)。这项工作将分三个阶段进行。第一阶段包括对1980年5月18日圣海伦斯火山(MSH)喷发后暴露良好的PDC矿床的实地研究,这是在首席研究员之前对这些矿床的工作的基础上进行的。现场工作包括结构、粒度和成分研究,以确定(或推断)PDC沉积物中侵蚀岩屑的来源、有利于侵蚀的基材条件(如坡度、表面粗糙度)以及侵蚀对侵蚀PDC下游流动动力学的影响。第二阶段涉及规模实验,探索有利于流化电流底部剪切和头部欠压侵蚀的一般条件,这是建立在合作者Roche博士的基础工作之上的。第三阶段包括实验,通过评估(1)地形障碍物对侵蚀和下游流动动力学的影响,(2)密度梯度增加对基底剪切应力和侵蚀的作用,以及(3)实验室流动中织物的发展作为流化程度和与障碍物相互作用的函数,专门探索我们从第一阶段的MSH现场结果中得出的解释和假设。最终目标是更全面地了解PDC破坏潜力和跳动距离的控制,这将有助于更好地评估和减轻与未来爆炸喷发相关的危害。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brittany Brand其他文献

Brittany Brand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brittany Brand', 18)}}的其他基金

Collaborative Research: Household Response to Wildfire – Integrating Behavioral Science and Evacuation Modeling to Improve Community Wildfire Resilience
合作研究:家庭对野火的反应 — 整合行为科学和疏散模型以提高社区野火的抵御能力
  • 批准号:
    2230618
  • 财政年份:
    2023
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Linking pyroclastic surge dynamics and deposits through integration of field data, multiphase numerical modeling, and experiments
合作研究:通过现场数据、多相数值模拟和实验的整合,将火山碎屑涌动动力学与沉积物联系起来
  • 批准号:
    2035649
  • 财政年份:
    2021
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring the Magmatic, Crustal, and Conduit Conditions Required for Mafic, Plinian Volcanism
合作研究:探索镁铁质、普林尼式火山活动所需的岩浆、地壳和管道条件
  • 批准号:
    1831143
  • 财政年份:
    2018
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Standard Grant
Assessing the Influence of Cultural Variables, Perceptions, and Earthquake Hazard Information on Household Emergency Preparedness
评估文化变量、认知和地震灾害信息对家庭应急准备的影响
  • 批准号:
    1663642
  • 财政年份:
    2017
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Standard Grant
Collaborative Research: A Closer Look at the May 18th, 1980 Pumice Plain Deposits: Implications for Assessing Eruptive Conditions and Pyroclastic Density Current Dynamics
合作研究:仔细观察 1980 年 5 月 18 日的浮石平原沉积物:对评估喷发条件和火山碎屑密度电流动态的影响
  • 批准号:
    0948588
  • 财政年份:
    2010
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Continuing Grant

相似海外基金

Towards reliable assessment of pyroclastic density current hazards
实现火山碎屑密度电流危害的可靠评估
  • 批准号:
    NE/V014242/1
  • 财政年份:
    2022
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Fellowship
NI: Pyroclastic Density Current Partnership (PDCP): A global partnership to align numerical models and experimental techniques.
NI:火山碎屑密度流合作伙伴关系 (PDCP):协调数值模型和实验技术的全球合作伙伴关系。
  • 批准号:
    NE/W003767/2
  • 财政年份:
    2022
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Research Grant
NI: Pyroclastic Density Current Partnership (PDCP): A global partnership to align numerical models and experimental techniques.
NI:火山碎屑密度流合作伙伴关系 (PDCP):协调数值模型和实验技术的全球合作伙伴关系。
  • 批准号:
    NE/W003767/1
  • 财政年份:
    2021
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Research Grant
Particle clustering in dilute pyroclastic density currents and plumes
稀火山碎屑密度流和羽流中的颗粒聚集
  • 批准号:
    2042173
  • 财政年份:
    2021
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Continuing Grant
High Resolution Radar Imaging of Pyroclastic Density Currents
火山碎屑密度流的高分辨率雷达成像
  • 批准号:
    NE/T008253/1
  • 财政年份:
    2020
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Research Grant
Constraining properties of pyroclastic density currents with remote infrasound and seismic observations
远程次声波和地震观测对火山碎屑密度流的约束特性
  • 批准号:
    1949219
  • 财政年份:
    2020
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: Experimental and Numerical Constraints on Density Evolution, Buoyancy Reversal, and Runout Distance in Pyroclastic Density Currents
合作研究:火山碎屑密度流中密度演化、浮力反转和跳动距离的实验和数值约束
  • 批准号:
    1852449
  • 财政年份:
    2019
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and Numerical Constraints on Density Evolution, Buoyancy Reversal, and Runout Distance in Pyroclastic Density Currents
合作研究:火山碎屑密度流中密度演化、浮力反转和跳动距离的实验和数值约束
  • 批准号:
    1852471
  • 财政年份:
    2019
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and Numerical Constraints on Density Evolution, Buoyancy Reversal, and Runout Distance in Pyroclastic Density Currents
合作研究:火山碎屑密度流中密度演化、浮力反转和跳动距离的实验和数值约束
  • 批准号:
    1852569
  • 财政年份:
    2019
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Standard Grant
The Interaction of Pyroclastic Density Currents with the Atmosphere & Landscapes: Integrating Experiments and Computational Approaches for Validation & Examination of Entra
火山碎屑密度流与大气的相互作用
  • 批准号:
    1841376
  • 财政年份:
    2018
  • 资助金额:
    $ 26.21万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了