EAGER: Structure-based Engineering of A Diol Dehydratase towards Dehydrating 1,2,4-Butanetriol

EAGER:基于结构的二醇脱水酶对 1,2,4-丁三醇进行脱水

基本信息

  • 批准号:
    1349499
  • 负责人:
  • 金额:
    $ 8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

Abstract#1349499Yan, YajunIntellectual Merit Characterization and understanding of natural enzymes and biosynthetic pathways have allowed enzyme and whole-cell biocatalytic approaches to be developed for the production of high-value chemicals such as artemisinic acid, and bulk chemicals and fuels such as longer chain alcohols. However, many valuable and useful compounds that are synthetically derived in the petrochemical industry do not have biocatalytic production approaches available. As a consequence, there is an urgent need for novel or engineered enzymes possessing novel properties to develop these new biocatalytic processes. 1,4-butanediol is a high value commodity chemical in the petrochemical industry for the production of plastics, polyesters, fibers, medicines, cosmetics, and pesticides. It has an annual market of 5 billion pounds. Asian-Pacific, Europe, and North America are the top 3 markets for 1,4-butanediol. Traditionally, 1,4-butanediol production completely relies on petroleum-based chemical processes, which have very high energy input and are not environmentally friendly. Given the high demand for 1,4-butanediol and environmental concerns, alternative production approaches from renewable sources are highly desired and of great practical value. Enzyme engineering is a powerful enabling technology which has been used to develop novel biocatalysts for many important industrial applications. It has the nature of high risk, since it is hard to predict how long it will take to find the optimal mutants. It could be quick or take a few years. However, the risk can be managed by creating and screening creditable mutant pools. Professor Yajun Yan at the University of Georgia has significant experience in approaches to enzyme engineering to enable the production of high value commodity chemicals. He proposes work on the enzyme engineering of a diol dehydratase for the production of the high value commodity chemical 1,4-butanediol from 1,2,4-butanetriol. The use of diol dehydratase for 1,4-butanediol generation has never been proposed, investigated, or exploited before. Therefore, the EAGER proposal will be highly innovative. In this EAGER proposal, a rational enzyme engineering approach to create a small and creditable enzyme mutant library will be used. A structural model of the diol dehydratase enzyme will be used to develop hypotheses for the library design. After identifying the most critical amino acid residues in the catalytic pocket that are responsible for the enzyme substrate specificity and activity by a docking study, saturated mutagenesis at these positions will be performed to create the mutant library. The PI will use the anaerobic growth based screening method to screen the library for improved mutants. Any mutants exhibiting novel or improved activity towards 1,2,4-butanetriol will be sequenced to determine the mutations and assayed to determine their kinetic parameters in vitro and in vivo.The identified beneficial mutations will be incorporated into the structure model to establish a design principle to guide catalytic pocket reconstruction. The design principle will consider three basic factors: catalytic pocket volume for substrate docking, charge and hydropathy of amino acid residues in the catalytic pocket for substrate binding, and interaction between substrates and catalytic sites for electron transfer. The findings will provide valuable information for enzyme rational design in general. Broader Impacts The research work in the EAGER proposal will be high-payoff since it will lead to the development of novel enzyme mutants that can be used for the generation of 1,4-butanediol from renewable sources via whole cell biocatalysis and bring transformative changes. In addition, the research work will provide new insights into the catalytic mechanism of diol dehydratase on a molecular level and promote more intelligent rational redesign of synthetically useful enzyme mutants, which are of great scientific significance. The proposed research will further strengthen and diversify the research and education of the BioChemical Engineering Program at the University of Georgia (UGA) by creating interdisciplinary training and research opportunities for undergraduate and graduate students, especially those from minorities and underrepresented groups. The proposed research will also use the Young Dawgs Program at UGA to educate and train the students from local high schools to inspire their interests and enthusiasm in science and engineering.
对天然酶和生物合成途径的表征和理解使得酶和全细胞生物催化方法能够被开发用于生产高价值的化学品,如青蒿酸,以及大宗化学品和燃料,如长链醇。然而,在石化工业中合成衍生的许多有价值和有用的化合物没有可用的生物催化生产方法。因此,迫切需要具有新特性的新的或工程化的酶来开发这些新的生物催化过程。1,4-丁二醇是石化工业中用于生产塑料、聚酯、纤维、药品、化妆品和农药的高价值商品化学品。它每年有50亿英镑的市场。亚太、欧洲和北美是1,4-丁二醇的前三大市场。传统上,1,4-丁二醇的生产完全依赖于石油基化学工艺,这些工艺具有非常高的能量输入并且不环保。考虑到对1,4_丁二醇的高需求和环境问题,高度期望来自可再生来源的替代生产方法,并且这些方法具有很大的实用价值。酶工程是一种强大的使能技术,已用于开发许多重要工业应用的新型生物催化剂。它具有高风险的性质,因为很难预测需要多长时间才能找到最佳突变体。可能很快,也可能需要几年时间。然而,可以通过创建和筛选可信的突变库来管理风险。格鲁吉亚大学的Yajun Yan教授在酶工程方法方面具有丰富的经验,可以生产高价值的商品化学品。他提出了二醇酯化酶的酶工程工作,用于从1,2,4-丁三醇生产高价值的商品化学品1,4-丁二醇。以前从未提出、研究或开发过使用二醇脱氢酶生成1,4-丁二醇。因此,EAGER提案将具有很高的创新性。在EAGER的建议中,将使用合理的酶工程方法来创建小而可信的酶突变体库。二醇脱氢酶的结构模型将用于开发库设计的假设。通过对接研究鉴定催化口袋中负责酶底物特异性和活性的最关键氨基酸残基后,将在这些位置进行饱和诱变以创建突变体文库。PI将使用基于厌氧生长的筛选方法筛选文库中的改良突变体。任何对1,2,4-丁三醇表现出新的或改进的活性的突变体将被测序以确定突变,并被分析以确定它们的体外和体内动力学参数。所鉴定的有益突变将被并入结构模型以建立指导催化口袋重建的设计原则。设计原则将考虑三个基本因素:用于底物对接的催化口袋体积,用于底物结合的催化口袋中氨基酸残基的电荷和亲水性,以及用于电子转移的底物和催化位点之间的相互作用。研究结果将为酶的合理设计提供有价值的信息。更广泛的影响EAGER提案中的研究工作将带来高回报,因为它将导致开发新的酶突变体,这些突变体可用于通过全细胞生物催化从可再生资源中产生1,4-丁二醇,并带来变革性变化。此外,该研究工作将在分子水平上对二醇脱氢酶的催化机制提供新的见解,并促进更智能合理地重新设计合成有用的酶突变体,具有重要的科学意义。拟议的研究将进一步加强和多样化的研究和教育的生物化学工程计划在格鲁吉亚(UGA)的大学通过创造跨学科的培训和研究机会,为本科生和研究生,特别是那些来自少数民族和代表性不足的群体。拟议的研究还将利用UGA的Young Dawgs计划来教育和培训当地高中的学生,以激发他们对科学和工程的兴趣和热情。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yajun Yan其他文献

Antiretroviral therapy hepatotoxicity: Prevalence, risk factors, and clinical characteristics in a cohort of Han Chinese
抗逆转录病毒治疗肝毒性:汉族人群中的患病率、危险因素和临床特征
  • DOI:
    10.1111/j.1872-034x.2009.00608.x
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Shi;X. Gui;Liping Deng;Yongxi Zhang;K. Liang;Rongrong Yang;Yajun Yan;Yupin Rong
  • 通讯作者:
    Yupin Rong
Engineering probiotics as living diagnostics and therapeutics for improving human health
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Zhao Zhou;Xin Chen;Huakang Sheng;Xiaolin Shen;Xinxiao Sun;Yajun Yan;Jia Wang;Qipeng Yuan
  • 通讯作者:
    Qipeng Yuan
CRISPR-based metabolic engineering in non-model microorganisms
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Liangyu Lu;Xiaolin Shen;Xinxiao Sun;Yajun Yan;Jia Wang;Qipeng Yuan
  • 通讯作者:
    Qipeng Yuan
Improving isoprenol production emvia/em systematic CRISPRi screening in engineered emEscherichia coli/em
  • DOI:
    10.1039/d2gc02255a
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    9.200
  • 作者:
    Jian Wang;Tian Jiang;Sierra Milligan;Jianli Zhang;Chenyi Li;Yajun Yan
  • 通讯作者:
    Yajun Yan
Retraction: s-wave superconductivity in barium-doped phenanthrene as revealed by specific-heat measurements [Phys. Rev. B 85, 180511(R) (2012)]
撤回:通过比热测量揭示的掺钡菲中的 s 波超导性 [Phys.
  • DOI:
    10.1103/physrevb.87.179901
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Ying;Xiangfeng Wang;Yajun Yan;Z. Xiang;X. G. Luo;Zhe Sun;Xianhui Chen
  • 通讯作者:
    Xianhui Chen

Yajun Yan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yajun Yan', 18)}}的其他基金

Microbial Conversion of Lignocellulosic Biomass into 1-Propanol and 2-Butanol
木质纤维素生物质微生物转化为 1-丙醇和 2-丁醇
  • 批准号:
    1335856
  • 财政年份:
    2013
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant

相似海外基金

TwinSSI: Digital Twin Modelling for Soil-Structure-Interaction based on CutFEM and BIM technologies
TwinSSI:基于 CutFEM 和 BIM 技术的土壤-结构相互作用数字孪生建模
  • 批准号:
    EP/Z001072/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Fellowship
Decoding the structure and formation history of the Milky Way halo with non-equilibrium orbit-based models
用非平衡轨道模型解码银河系晕的结构和形成历史
  • 批准号:
    ST/X004066/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Fellowship
Structure-based identification of optimized mutant Kir3.4 inhibitors for renoprotection (C07 (A03 + A04))
基于结构的肾脏保护优化突变型 Kir3.4 抑制剂的鉴定 (C07 (A03 A04))
  • 批准号:
    516847250
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Collaborative Research Centres
High color purity and multicolor luminescence based on precise synthesis and electronic structure design of multinary quantum dots
基于多元量子点的精确合成和电子结构设计的高色纯度和多色发光
  • 批准号:
    23H01786
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Structure-based functional analysis of RNA Polymerase
RNA 聚合酶基于结构的功能分析
  • 批准号:
    2884826
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Studentship
DUNeS: Structure based development of dual specificity inhibitors of NLRP3 and SARM1
DUNeS:NLRP3 和 SARM1 双特异性抑制剂的基于结构的开发
  • 批准号:
    2881886
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Studentship
Structure and dynamics of the subcontinental lithospheric mantle over the Central and Eastern North American continent, constrained by numerical modeling based on tomography models
基于层析成像模型的数值模拟约束北美大陆中部和东部次大陆岩石圈地幔的结构和动力学
  • 批准号:
    2240943
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Elucidation of a novel mode of action of iezoside based on the structure-activity relationship
基于构效关系阐明iezoside的新作用模式
  • 批准号:
    23K19252
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of Theoretical Design Methods of Catalysts Based on Electronic Structure Theory and Their Applications to Design and Development of High-Performance Molecular Catalysts
基于电子结构理论的催化剂理论设计方法发展及其在高性能分子催化剂设计与开发中的应用
  • 批准号:
    22KJ0003
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
III: Small: RUI: Designing Structure-Phenotype Query-Retrieval and Analysis Systems for Microscopy-Based Whole Organism Studies
III:小:RUI:为基于显微镜的整个生物体研究设计结构表型查询检索和分析系统
  • 批准号:
    2401096
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了