CAREER: Using Analytics on Security Data to Understand Negative Innovations

职业:使用安全数据分析来了解负面创新

基本信息

  • 批准号:
    1350061
  • 负责人:
  • 金额:
    $ 40.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

The world increasingly relies on computer systems and associated software, yet attackers continue to exploit vulnerabilities in this software to threaten security in new and sophisticated ways. This research views exploitations of software vulnerabilities as critical, but not unique, examples of innovations that society would like to discourage? many other examples (e.g., biological weapons, sports doping, terrorist devices, privacy intrusions) exist. Purely technical panaceas are unlikely; instead, given inherent residual risk, society needs to better understand how adversaries adopt technological innovation and the efficacy of measures to stem their diffusion. Using large-scale data analysis, this research builds on innovation diffusion theory to model how exploitations of security vulnerabilities spread through attacker populations. The study of the specific software security context (particularly regarding disclosure and transparency) can clarify the complex interaction between attack and countermeasure activity and help society benefit from technology while reducing concomitant negative consequences.The project integrates a cohesive set of empirical studies based on a massive dataset of intrusion alerts augmented by the National Vulnerability Database and manual data collection. It combines theory from economics, computer science, and sociology with advances in analytical tools to build predictive models. While researchers recognize that deeper understandings of attacks and countermeasures are critical, they remain difficult problems. However, recent advances in analytical techniques combined with the availability of large datasets present an emerging opportunity to model and understand attacker behavior. The project also promotes awareness of security through a range of activities (including instructional modules, workshops, and course offerings), using the theoretical insights from the research program to promote diffusion of measures that counter security threats. Regardless of how the threat landscape continues to evolve, rigorous methods for modeling attacker behavior and diffusing information will remain crucial.
世界越来越依赖于计算机系统和相关软件,然而攻击者继续利用这些软件中的漏洞,以新的和复杂的方式威胁安全。这项研究认为利用软件漏洞是关键的,但不是唯一的,社会想要阻止的创新例子。还有许多其他例子(例如,生物武器、体育兴奋剂、恐怖主义装置、侵犯隐私)。纯技术的灵丹妙药是不可能的;相反,考虑到固有的剩余风险,社会需要更好地了解对手如何采用技术创新以及阻止其扩散的措施的有效性。利用大规模数据分析,本研究建立在创新扩散理论的基础上,对安全漏洞的利用如何在攻击者群体中传播进行建模。研究特定的软件安全环境(特别是关于披露和透明度)可以澄清攻击和对抗活动之间复杂的相互作用,并帮助社会从技术中受益,同时减少伴随的负面后果。该项目整合了一套有凝聚力的实证研究,该研究基于由国家漏洞数据库和人工数据收集增强的大量入侵警报数据集。它将经济学、计算机科学和社会学的理论与先进的分析工具相结合,以建立预测模型。虽然研究人员认识到对攻击和对策的深入理解至关重要,但它们仍然是难题。然而,分析技术的最新进展与大型数据集的可用性相结合,为建模和理解攻击者的行为提供了新的机会。该项目还通过一系列活动(包括教学模块、研讨会和课程设置)提高安全意识,利用研究项目的理论见解促进应对安全威胁措施的传播。无论威胁形势如何发展,建模攻击者行为和传播信息的严格方法仍然至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Ransbotham其他文献

Samuel Ransbotham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Ransbotham', 18)}}的其他基金

NSF Student Travel Grant for 2019 Workshop on the Economics of Information Security (WEIS)
NSF 学生旅费资助 2019 年信息安全经济学 (WEIS) 研讨会
  • 批准号:
    1927653
  • 财政年份:
    2019
  • 资助金额:
    $ 40.12万
  • 项目类别:
    Standard Grant

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

STTR Phase I: Using Audio Analytics and Sensing to Enhance Broiler Chicken Welfare and Performance by Continuously Monitoring Bird Vocalizations
STTR 第一阶段:使用音频分析和传感,通过持续监测鸡的发声来提高肉鸡的福利和性能
  • 批准号:
    2335590
  • 财政年份:
    2024
  • 资助金额:
    $ 40.12万
  • 项目类别:
    Standard Grant
Understanding Processes of Neighborhood Change using Property Text Analytics
使用属性文本分析了解社区变化的过程
  • 批准号:
    2314726
  • 财政年份:
    2023
  • 资助金额:
    $ 40.12万
  • 项目类别:
    Standard Grant
Using AR and AI-driven analytics to personalise wellbeing content in a social board game context
使用 AR 和 AI 驱动的分析在社交棋盘游戏环境中个性化健康内容
  • 批准号:
    10056428
  • 财政年份:
    2023
  • 资助金额:
    $ 40.12万
  • 项目类别:
    Collaborative R&D
Visual Analytics for Exploration and Hypothesis Generation Using Highly MultiplexedSpatial Data of Tissues and Tumors
使用组织和肿瘤的高度多重空间数据进行探索和假设生成的可视化分析
  • 批准号:
    10743329
  • 财政年份:
    2023
  • 资助金额:
    $ 40.12万
  • 项目类别:
Automated monitoring of health and welfare in groups of pigs using evidential reasoning and video-analytics
使用证据推理和视频分析自动监测猪群的健康和福利
  • 批准号:
    2886810
  • 财政年份:
    2023
  • 资助金额:
    $ 40.12万
  • 项目类别:
    Studentship
Fundamental research on the development of science teaching methods using Learning Analytics
使用学习分析开发科学教学方法的基础研究
  • 批准号:
    23K02469
  • 财政年份:
    2023
  • 资助金额:
    $ 40.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Quantifying the Coarsening Kinetics of Supported Metal Nanoparticles Using Time-resolved Electron Microscopy, Data Analytics and Simulations
合作研究:利用时间分辨电子显微镜、数据分析和模拟量化支撑金属纳米颗粒的粗化动力学
  • 批准号:
    2303085
  • 财政年份:
    2023
  • 资助金额:
    $ 40.12万
  • 项目类别:
    Standard Grant
Using spatial analytics and social determinants of health to redefine critical access to medical transport services for rural populations
利用空间分析和健康的社会决定因素重新定义农村人口获得医疗运输服务的关键途径
  • 批准号:
    10643235
  • 财政年份:
    2023
  • 资助金额:
    $ 40.12万
  • 项目类别:
Collaborative Research: Quantifying the Coarsening Kinetics of Supported Metal Nanoparticles Using Time-resolved Electron Microscopy, Data Analytics and Simulations
合作研究:利用时间分辨电子显微镜、数据分析和模拟量化支撑金属纳米颗粒的粗化动力学
  • 批准号:
    2303084
  • 财政年份:
    2023
  • 资助金额:
    $ 40.12万
  • 项目类别:
    Standard Grant
SBIR Phase II: Forecasting Battery Health and Maintenance using Data-Driven Predictive Analytics
SBIR 第二阶段:使用数据驱动的预测分析来预测电池健康状况和维护
  • 批准号:
    2243671
  • 财政年份:
    2023
  • 资助金额:
    $ 40.12万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了