CAREER/CDS&E: Advanced, 3D Infrastructure Information Modeling Using Lidar
职业/CDS
基本信息
- 批准号:1351487
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary research focus of this Faculty Early Career Development (CAREER) Program award is to efficiently identify and extract meaningful information from three-dimensional, geospatial models of transportation infrastructure in a holistic, automated framework, enabling broader application. Advanced mapping technologies such as laser scanning produce three-dimensional maps, creating highly detailed scenes that can be virtually explored and queried for a diverse range of purposes including infrastructure management, digital terrain modeling, cultural heritage, flood plain delineation, and landslide detection. However, tradeoffs exist between the detail and scale provided by these technologies and the immense size of the resulting datasets. This complexity can strain the most powerful computational resources and require a steep learning curve to exploit the data. While recent tools have made significant progress, only a small and piece-meal portion of information can be automatically extracted from these rich datasets compared to what is actually available. Key scientific questions to be addressed through this research include (1) What inherent attributes of an object and associated representation in laser scan data and supporting imagery are most beneficial to accurately identifying and extracting an object?, (2) How can neighboring features and context of an object help with rapidly identifying it within geospatial data?, and (3) How can an abridged framework be developed to improve information extraction from laser scan data to consider the broad range of transportation objects? This overarching framework will consider a broad range of object types, incorporate advanced system information and data structuring, function in noisy, real-world environments, and focus on datasets covering large spatial scales consistent with transportation infrastructure management. Products resulting from this framework include a transportation infrastructure object properties database, fully-classified benchmark datasets, new algorithms, and supporting code, which will be made publicly available. Well-maintained transportation infrastructure is vital to our economy as well as public safety. Most transportation agencies charged with maintaining infrastructure are trying to develop a comprehensive methodology for inventory, maintenance and management of their immense assets. In many cases, the available resources are reduced while maintenance demands still increase. This research will provide timely solutions to map and digitally manage these assets more efficiently and cost-effectively than current practices. Although primarily focused on transportation, the computational methods and techniques will be applicable and extendable to a wide range of other applications such as land management, urban mapping, and robotics. This project also will provide students with multi-disciplinary education and training in geospatial analysis, computer science, transportation, and engineering. Despite the high demand for geospatial expertise today, educational opportunities are limited and challenging because of the rapid evolution of the supporting technologies. As a result, the U.S. has an insufficient number of geospatially-trained students entering the workforce to meet the ever-increasing demand utilizing geospatial information throughout society. This project will enhance geospatial education through activities ranging from exposure at public events to training camps for high school age students to creation of a model civil engineering geomatics graduate program.
这项教师早期职业发展(Career)计划的主要研究重点是在一个整体的自动化框架中,有效地从交通基础设施的三维地理空间模型中识别和提取有意义的信息,从而实现更广泛的应用。先进的测绘技术,如激光扫描产生三维地图,创建高度详细的场景,可以虚拟探索和查询各种目的,包括基础设施管理,数字地形建模,文化遗产,洪泛平原划定和滑坡检测。然而,在这些技术提供的细节和规模与最终数据集的巨大规模之间存在权衡。这种复杂性可能会耗尽最强大的计算资源,并且需要一个陡峭的学习曲线来利用数据。虽然最近的工具取得了重大进展,但与实际可用的信息相比,只有一小部分信息可以从这些丰富的数据集中自动提取出来。通过本研究要解决的关键科学问题包括:(1)物体的哪些固有属性及其在激光扫描数据和支持图像中的相关表示最有利于准确识别和提取物体?(2)在地理空间数据中,物体的相邻特征和上下文如何帮助快速识别该物体?(3)如何开发一个简化的框架来改进激光扫描数据的信息提取,以考虑广泛的运输对象?这个总体框架将考虑广泛的对象类型,结合先进的系统信息和数据结构,在嘈杂的现实环境中发挥作用,并专注于覆盖与交通基础设施管理一致的大空间尺度的数据集。该框架产生的产品包括交通基础设施对象属性数据库、完全分类的基准数据集、新算法和支持代码,这些都将公开提供。维护良好的交通基础设施对我们的经济和公共安全至关重要。大多数负责维护基础设施的运输机构都在努力开发一种全面的方法来清点、维护和管理其庞大的资产。在许多情况下,可用资源减少,而维护需求仍然增加。这项研究将提供及时的解决方案,比目前的做法更有效、更经济地绘制和数字化管理这些资产。虽然主要集中在交通运输,计算方法和技术将适用和扩展到广泛的其他应用,如土地管理,城市测绘和机器人。该计划也将为学生提供地理空间分析、计算机科学、交通运输和工程等多学科的教育和培训。尽管今天对地理空间专业知识的需求很高,但由于支持技术的快速发展,教育机会有限且具有挑战性。因此,美国没有足够的地理空间训练的学生进入劳动力市场,以满足整个社会对地理空间信息日益增长的需求。该项目将通过各种活动加强地理空间教育,包括在公共活动中为高中学生提供培训,以及创建一个土木工程地理信息研究生课程的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Olsen其他文献
Combustion resistance of the 129Xe hyperpolarized nuclear spin state.
129Xe超极化核自旋态的燃烧阻力。
- DOI:
10.1039/c2cp43382f - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
K. Stupic;Joseph S. Six;Michael Olsen;G. Pavlovskaya;T. Meersmann - 通讯作者:
T. Meersmann
NT-PROBNP, LEFT VENTRICULAR STRUCTURE AND FUNCTION, AND LONG-TERM CARDIOVASCULAR EVENTS: INSIGHTS FROM A PROSPECTIVE POPULATION-BASED COHORT STUDY
- DOI:
10.1016/s0735-1097(17)34139-6 - 发表时间:
2017-03-21 - 期刊:
- 影响因子:
- 作者:
Manan Pareek;Deepak L. Bhatt;Muthiah Vaduganathan;Tor Biering-Sørensen;Jacob E. Møller;Margrét Leósdóttir;Martin Magnusson;Peter M. Nilsson;Michael Olsen - 通讯作者:
Michael Olsen
A high precision gas flow cell for performing in situ neutron studies of local atomic structure in catalytic materials.
高精度气体流动池,用于对催化材料中的局部原子结构进行原位中子研究。
- DOI:
10.1063/1.4978287 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
D. Olds;K. Page;A. Paecklar;P. F. Peterson;Jue Liu;G. Rucker;Mariano Ruiz;Michael Olsen;Michelle D. Pawel;S. Overbury;J. Neilson - 通讯作者:
J. Neilson
INCREASED HIGH SENSITIVITY C-REACTIVE PROTEIN IS ASSOCIATED WITH AORTIC VALVE REPLACEMENT IN PATIENTS WITH MILD TO MODERATE AORTIC VALVE STENOSIS: A SEAS SUBSTUDY
- DOI:
10.1016/s0735-1097(14)61922-7 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:
- 作者:
Adam Blyme;Camilla Asferg;Olav Nielsen;Kurt Boman;Christa Gohlke-Baerwolf;Antero Kesniemi;Christoph Nienaber;Terje Pedersen;Simon Ray;Anne Rosseb;Ronnie Willenheimer;Kristian Wachtell;Michael Olsen - 通讯作者:
Michael Olsen
Incidence and predictors of post-thrombotic syndrome in patients with proximal DVT in a real-world setting: findings from the GARFIELD-VTE registry
现实世界中近端 DVT 患者血栓后综合征的发生率和预测因素:GARFIELD-VTE 登记处的发现
- DOI:
10.1007/s11239-023-02895-7 - 发表时间:
2023 - 期刊:
- 影响因子:4
- 作者:
P. Prandoni;Sylvia Haas;M. Fluharty;S. Schellong;Harry Gibbs;Eric Tse;M. Carrier;B. Jacobson;H. ten Cate;E. Panchenko;P. Verhamme;K. Pieper;G. Kayani;L. A. Kakkar;Nik Akihiko Juan David Taylan David Walter Giancarlo M Abdullah Abiko Abril Acevedo Adademir Adler Ageno ;Nik Abdullah;Akihiko Abiko;Juan Abril;David Acevedo;T. Adademir;David Adler;W. Ageno;G. Agnelli;Mostafa Ahmed;Ahmet Aksoy;Serir Aktogu;Gholam Ali;Raz Alikhan;Gregory Allen;P. Angchaisuksiri;Sevestre Antoinette;Amy Arouni;Addala Azeddine;Tarek Azim;Wilfried Backer;Y. Balthazar;Soo Bang;M. Banyai;Olga Barbarash;Marcelo Barrionuevo;Mostafa Bary;Bektas Battaloglu;W. Bax;Terriat Béatrice;Steffen Behrens;D. Belenky;Juan Benitez;M. Berli;Peuch Bernadette;Andrea Berni;M. Betsbrugge;Adriaan Beyers;Abraham Bezuidenhout;Claude Bidi;Peter Bilderling;Laure Binet;Tina Biss;Luis Blasco;Erwin Blessing;Peter Blombery;J. Bono;K. Boomars;Juree Boondumrongsagoon;Lohana Borges;M. Bosch;Louis Botha;H. Bounameaux;T. Boussy;Margaret Bowers;Mikhail Boyarkin;Cornelia Brauer;Kate L. Burbury;Hana Burianova;Yuriy Burov;Cas Cader;R. Canevascini;L. Capiau;Roberto Cappelli;Boulon Carine;M. Carrier;Abu Carrim;Patrick Carroll;Tomas Casabella;H. Cate;Marco Cattaneo;Vladimir Cech;Luis Cervera;Seung Cha;Joseph Chacko;Kuan Chang;K. Chansung;Ting Chao;Anoop Chauhan;S. Chayangsu;Mariam Chetanachan;Lee Chew;Chern Chiang;Kuan Chiu;Won Choi;Ponchaux Christian;Brousse Christophe;Seinturier Christophe;Sanjeev Chunilal;Amanda Clark;Abdurrahim Colak;João Correa;B. Cosmi;Franco Cosmi;Z. Coufal;D. Creagh;L. Cristina;Carlos Cuneo;Garcia Dalmau;Garrigues Damien;Armando D’Angelo;H. Darius;Sudip Datta;Adriaan Dees;Mohamed Dessoki;C. Díaz;Enrique Diaz;Emre Dogan;Brisot Dominique;Elkouri Dominique;Stephan Dominique;Servaas Donders;Dmitry Dorokhov;Johan Duchateau;Norberto Duda;Grace Eddie;Hallah Elali;H. Eldin;Chevrier Elisa;Messas Emmanuel;Barbara Erdelyi;Frans Erdkamp;Ehab M. Esheiba;G. Esperón;Sherif Essameldin;T. Everington;Markus Faghih;Anna Falanga;J. Fedele;R. Ferkl;A. Fernandez;Manuel Fernandez;P. Ferrini;F. Ferroni;Jose Filho;Mark Fixley;John Fletcher;Oscar Flores;Couturaud Francis;Bergmann Francois;Hendrik Franow;Amr Gad;Mohamed Gaffar;Mary Gaffney;G. Gal;Javier Galvar;Angel Galvez;Marco Gamba;Gin Gan;V. Gerdes;Hagen Gerofke;Harry Gibbs;H. Gogia;Ivan Gordeev;Shinya Goto;Sam Griffin;Christina Gris;Ernst Grochenig;J. Gujral;Ozcan Gur;Orcun Gurbuz;Michel Gustin;Luis Guzman;Chung Ha;Ghassan Haddad;Dirk Hagemann;P. Hainaut;Muhammad Hameed;Terence Hart;Hatice Hasanoglu;Erman Hashas;Wilhelm Haverkamp;Desmurs Helene;Fitjerald Henry;Artur Herdy;Rika Herreweghe;Masao Hirano;Prahlad Ho;Wai Ho;G. Hollanders;Miroslav Homza;Thomas Horacek;Chien Hsia;Chien Huang;Chien Huang;Chun Huang;Julian Humphrey;Beverley Hunt;Azlan Husin;Hun Hwang;Piriyaporn Iamsai;Manuel Ibarra;D. Imberti;Mahe Isabelle;Selim Isbir;B. Jacobson;P. Janský;Weihong Jiang;D. Jiménez;Zhicheng Jing;Jin Joh;G. Kamalov;Junji Kanda;Masashi Kanemoto;N. Kanitsap;M. Kanko;Kemal Karaarslan;J. Kassis;Atsushi Kato;Andrey Kazakov;David Keeling;Reinhold Keim;Allan Kelly;Mohamed Khan;Bonnie Kho;Alexey Khotuntsov;Ho Kim;Igor Kim;JangYong Kim;Jin Kim;Moo Kim;Yang Kim;Ilker Kiris;R. Klamroth;A. Kleiban;Garry Klein;Katsuhiro Kondo;Martin Koretzky;Wolfgang Korte;Modise Koto;F. Koura;Michael Kovacs;Vladimir Krasavin;Alan Krichell;Knut Kroeger;Ralf Kroening;Jiri Krupicka;Emre Kubat;Dusan Kucera;Shintaro Kuki;Jen Kuo;J. Kvasnička;Chi Kwok;JiHyun Kwon;Wen Lai;Pavel Lang;Jose Lara;J. Laštůvka;Holger Lawall;Michael Leahy;Jae Lee;Moon Lee;Raul Leon;Siwe Léopold;Michael Levy;Igor Libov;Wei Lin;Ann Lockman;C. Lodigiani;Irene Looi;Luciano López;Ab Loualidi;Charles Lunn;Canhua Luo;T. Luvhengo;Shaun Maasdorp;Peter MacCallum;Andrew Machowski;Mujibur Majumder;N. Makruasi;W. Malek;Kubina Manuel;P. Marchena;Javier Marino;Rafael Martinez;Shunzo Matsuoka;A. Mazzone;Simon McRae;Stuart Mellor;Robert Mendes;G. Merli;Antoni Mestre;Escande Michèle;Saskia Middeldorp;Raimundo Miranda;Ahmed Mohamed;Monniaty Mohamed;M. Moia;Dorthe Møller;Serge Motte;Moustafa Moustafa;N. Mumoli;Yeung Mun;Michael Munch;J. Muntaner;Bisher Mustafa;P. Mutirangura;Martin Myriam;Sang Na;Mohamed Nagib;Hiroaki Nakamura;Mashio Nakamura;Satoshi Nakazawa;Seung Nam;Bhavesh Natha;Falvo Nicolas;J. Nielsen;L. Norasetthada;Nordiana Nordin;T. Numbenjapon;Ole Nyvad;Hans Ohler;Yasushi Ohnuma;Michael Olsen;Tomoya Onodera;Christian Opitz;Alisha Oropallo;R. Otero;Oztekin Oto;Jorge Paez;E. Panchenko;Félix Paredes;Jin Park;Yong Park;Nishen Paruk;Siriwimon Patanasing;Guillot Paul;Michel Pauw;Jose Peromingo;Dmitry Petrov;W. Pharr;Georg Plassmann;George Platt;Ivo Podpera;G. Poirier;D. Poli;E. Porreca;Domenico Prisco;R. Prosecký;Jiri Pumprla;Herbert Raedt;Rapule Ratsela;Selma Raymundo;Raquel Reyes;Tim Reynolds;L. Ria;P. Rojnuckarin;Dirk Roux;Ayman Salem;Rita Santoro;Jose Saraiva;J. Sathar;Ismail Savas;S. Schellong;Lilia Schiavi;Andor Schmidt;Renate Schmidt;Herman Schroe;M. Schul;C. Schwencke;David Scott;Gaurand Shah;Yoshisato Shibata;Jhih Shih;Hyeok Shim;Sherif Sholkamy;Kou Shyu;Rupesh Singh;Suaran Singh;D. Skowasch;A. Slocombe;Clifford Smith;German Sokurenko;Mosaad Soliman;S. Solymoss;Ik Song;Igor Sonkin;Joan Souto;Rudolf Spacek;Ilya Staroverov;Daniel Staub;H. Striekwold;Markus Stuecker;Y. Subbotin;Igor Suchkov;Shenghua Sun;J. Suriñach;T. Suwanban;Koscál Svatopluk;Jaromira Svobodova;Mersel Tahar;Kensuke Takeuchi;Y. Tanabe;Isabel Tenorio;Sophie Testa;Daniel Theodoro;Hongyan Tian;L. Tick;Luc Timmermans;Seng Ting;E. Tiraferri;Cheng Toh;See Toh;Vladimir Tolstikhin;Jorge Toro;A. Tosetto;Berremeli Toufek;B. Trimarco;Eric Tse;Wei Tseng;Hatice Turker;Kwo Ueng;E. Usandizaga;K. Vandenbosch;Jan Vanwelden;P. Verhamme;Jiri Vesely;Beatrice Vesti;P. Viboonjuntra;O. Vilamajó;Philippe Vleeschauwer;Haofu Wang;Shenming Wang;Chris Ward;Akinori Watanabe;Simon Watt;J. Welker;Rachel Wells;Kwan Wern;Jan Westendorf;Richard White;Benedicte Wilson;Lily Wong;Raymond Wong;S. Wongkhantee;Chau Wu;Chih Wu;Cynthia Wu;Jinghua Yang;Zhenwen Yang;Zhongqi Yang;Celal Yavuz;Erik Yeo;H. Yhim;Kai Yiu;Shuichi Yoshida;Winston Yoshida;C. Zaidman;Dmitry Zateyshchikov;Thomas Zeller;Stanislav Zemek;Lei Zhang;Weihua Zhang;Hong Zhu;Hesham Zidan;Brian Zidel;K. Zrazhevskiy;Nadezhda A. Zubareva. - 通讯作者:
Nadezhda A. Zubareva.
Michael Olsen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Olsen', 18)}}的其他基金
Collaborative Research: Droplet breakup in homogenous turbulence: model validation through experiments and direct numerical simulations
合作研究:均匀湍流中的液滴破碎:通过实验和直接数值模拟进行模型验证
- 批准号:
2201707 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Planning Grant: Engineering Research Center for Built Infrastructure Geospatial Data Acquisition, Visualization, and Analysis (BIGDAVA)
规划资助:建筑基础设施地理空间数据采集、可视化和分析工程研究中心(BIGDAVA)
- 批准号:
1937070 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: Investigation of the Effects of Rockfall Impacts on Structures During the Christchurch Earthquake Series
快速/合作研究:调查基督城地震系列期间落石对结构的影响
- 批准号:
1439883 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: RAPID - Post-Disaster Structural Data Collection Following the 11 March 2011 Tohoku, Japan Tsunami
合作研究:RAPID - 2011 年 3 月 11 日日本东北海啸后的灾后结构数据收集
- 批准号:
1138699 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Nanoprecipitation in Turbulent Liquid-Phase Vortex Reactors: A Fundamental Investigation of Scale Up Using Experimentally Validated CFD Models
湍流液相涡旋反应器中的纳米沉淀:使用经过实验验证的 CFD 模型进行放大的基础研究
- 批准号:
0932978 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
MRI: Acquisition of a High-Speed Particle Image Velocimetry System for Fluid Dynamics Research
MRI:采集用于流体动力学研究的高速粒子图像测速系统
- 批准号:
0521173 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Development of Microstructures for High Heat Flux Applications Utilizing Non-Intrusive Temperature and Velocity Measurement Techniques
职业:利用非侵入式温度和速度测量技术开发高热通量应用的微观结构
- 批准号:
0134469 - 财政年份:2002
- 资助金额:
$ 40万 - 项目类别:
Standard Grant