Planning Grant: Engineering Research Center for Built Infrastructure Geospatial Data Acquisition, Visualization, and Analysis (BIGDAVA)

规划资助:建筑基础设施地理空间数据采集、可视化和分析工程研究中心(BIGDAVA)

基本信息

  • 批准号:
    1937070
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Planning Grant: Engineering Research Center for Built Infrastructure Geospatial Data Acquisition, Visualization, and Analysis (BIGDAVA)Project AbstractCritical infrastructure (buildings, roadways, water systems, sewer systems, etc.) in both urban and rural settings in the U.S. continues to degrade, receiving poor ratings by experts and causing significant economic and societal stress. Important cultural monuments also continue to deteriorate with limited resources available for maintenance. These vital infrastructure and monuments are further threatened by a variety of hazards such as earthquakes, landslides, tornadoes, hurricanes, and flooding. Simultaneously, leaps in digital technology are moving us towards the promise of Smart Cities. The Internet of Things (IoT), 5G networks, micro-satellites, crowd sharing, and autonomous vehicles all offer or require a higher level of intelligent interaction with our infrastructure. Advanced geospatial data (maps) are available for the management, monitoring, and upgrading of our infrastructure including technologies such as lidar (light detection and ranging) and unmanned aircraft system (UAS or drone) imaging. Our economy is becoming increasingly reliant on timely geospatial information in order to make more informed and faster decisions. Nevertheless, requirements for the effective use of geospatial technology are high and there is a growing workforce shortage with the appropriate level of expertise. At the same time, there are limited offerings at universities and technical schools of dedicated courses focused on geomatics and geospatial technology fundamentals, particularly within civil engineering programs, which produce the engineers who build and maintain infrastructure. This planning grant is an important step to develop an Engineering Research Center (ERC) that can provide vital resources enhancing accessibility to geospatial data and expansion of opportunities for geospatial education across the country. Increasingly large 3D geospatial data sets require high-end workstations, skilled programmers, and expensive software to leverage advanced visualization and analysis capabilities. Data processing often includes tedious manual tasks, leading to subjectivity in processing and limiting the value of rich, quantitative information. Despite these challenges, the return on investment (ROI) from geospatial technologies can be tremendous, especially for public entities who utilize these technologies in asset management. The vision of the ERC BIGDAVA is to provide state-of-the-art solutions to address these challenges using a convergent, interdisciplinary model that provides novel research into geospatial data applications that enhance our built infrastructure including 3D planning, design and construction processes, increased resilience to natural hazards, and digital preservation of important cultural heritage - both natural and anthropogenic. This planning grant will build the foundation for the ERC through workshops for diverse stakeholders to identify key bottlenecks as well as building a highly skilled team of academics and industry experts who can develop and disseminate novel solutions.To achieve and implement this vision to provide these benefits, many technical challenges need to be addressed through the research activities of the ERC. While a variety of geospatial analysis algorithms and processing software exist, most available solutions cannot scale to the sizes of datasets now being regularly collected and will not be effective as the technology continues to advance. As a result, people are forced to work with small subsets of the actual data. Smarter algorithms, data models, and visualization techniques are needed to exploit the full potential of these new datasets. Technological advances such as GPU architecture, Deep Learning, and Artificial Intelligence are well-suited to the creation of smarter algorithms, since they enable more efficient processing of large datasets. The proposed ERC will explore new approaches that more efficiently extract usable information from these extremely large and incompatible datasets via visual interaction and exploitation of these new technologies. With these new algorithms and integrated approach, new scientific insights and discoveries will be possible. Today many scientists spend a significant portion of their time managing data and multiple software programs rather than exploring innovative, scientific hypotheses. A key goal of the eventual ERC will be to develop innovative data processing solutions that enable more widespread and effective use of these rich datasets, allowing downstream users to focus less on managing data and more on how to leverage the information to address the needs of a digital society. The planning grant activities will support identifying and building the required diverse expertise in teams and gather the multiple stakeholders necessary for advancing the research, educational, inclusion, and innovation goals of the potential BIGDAVA ERCThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
规划补助金:工程研究中心建成基础设施地理空间数据采集,可视化和分析(BIGDAVA)项目摘要关键基础设施(建筑物,道路,供水系统,下水道系统等)在美国城市和农村环境中,气候变化继续恶化,专家的评级很差,并造成重大的经济和社会压力。重要的文化古迹也在继续恶化,可用于维护的资源有限。这些重要的基础设施和古迹还受到各种灾害的威胁,如地震、山体滑坡、龙卷风、飓风和洪水。与此同时,数字技术的飞跃正在推动我们实现智慧城市的承诺。物联网(IoT)、5G网络、微型卫星、人群共享和自动驾驶汽车都提供或需要与我们的基础设施进行更高水平的智能交互。先进的地理空间数据(地图)可用于管理,监控和升级我们的基础设施,包括激光雷达(光探测和测距)和无人机系统(UAS或无人机)成像等技术。我们的经济越来越依赖于及时的地理空间信息,以便做出更明智和更快的决策。然而,有效利用地理空间技术的要求很高,具有适当专业知识水平的劳动力日益短缺。与此同时,大学和技校提供的专门课程有限,重点是地理信息学和地理空间技术基础知识,特别是在土木工程项目中,这些项目培养建造和维护基础设施的工程师。这项规划补助金是发展工程研究中心(ERC)的重要一步,该中心可以提供重要资源,提高地理空间数据的可访问性,并扩大全国地理空间教育的机会。越来越大的3D地理空间数据集需要高端工作站、熟练的程序员和昂贵的软件来利用高级可视化和分析功能。数据处理通常包括繁琐的手动任务,导致处理中的主观性,并限制了丰富的定量信息的价值。尽管存在这些挑战,但地理空间技术的投资回报(ROI)可能是巨大的,特别是对于在资产管理中使用这些技术的公共实体。ERC BIGDAVA的愿景是提供最先进的解决方案,以应对这些挑战,使用融合的跨学科模型,为地理空间数据应用提供新颖的研究,增强我们的建筑基础设施,包括3D规划,设计和施工过程,提高对自然灾害的抵御能力,以及重要文化遗产的数字保护-自然和人为的。ERC将通过为不同利益相关者举办研讨会,以确定关键瓶颈,并建立一支由学术界和行业专家组成的高技能团队,以开发和推广新的解决方案,为ERC奠定基础。为了实现和实现这一愿景,以提供这些好处,需要通过ERC的研究活动来解决许多技术挑战。虽然存在各种地理空间分析算法和处理软件,但大多数可用的解决方案无法扩展到现在定期收集的数据集的大小,并且随着技术的不断发展,将不会有效。因此,人们被迫处理实际数据的一小部分。需要更智能的算法、数据模型和可视化技术来充分利用这些新数据集的潜力。GPU架构、深度学习和人工智能等技术进步非常适合创建更智能的算法,因为它们可以更有效地处理大型数据集。拟议的ERC将探索新的方法,通过视觉交互和利用这些新技术,更有效地从这些极其庞大和不兼容的数据集中提取有用的信息。有了这些新的算法和综合方法,新的科学见解和发现将成为可能。今天,许多科学家花了大量时间管理数据和多个软件程序,而不是探索创新的科学假设。最终ERC的一个关键目标是开发创新的数据处理解决方案,使这些丰富的数据集得到更广泛和有效的使用,使下游用户能够更少地关注数据管理,更多地关注如何利用信息来满足数字社会的需求。规划补助金活动将支持确定和建立团队所需的多样化专业知识,并收集必要的多个利益相关者,以推进潜在BIGDAVA ERCThis奖项的研究,教育,包容和创新目标反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Olsen其他文献

Combustion resistance of the 129Xe hyperpolarized nuclear spin state.
129Xe超极化核自旋态的燃烧阻力。
  • DOI:
    10.1039/c2cp43382f
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Stupic;Joseph S. Six;Michael Olsen;G. Pavlovskaya;T. Meersmann
  • 通讯作者:
    T. Meersmann
NT-PROBNP, LEFT VENTRICULAR STRUCTURE AND FUNCTION, AND LONG-TERM CARDIOVASCULAR EVENTS: INSIGHTS FROM A PROSPECTIVE POPULATION-BASED COHORT STUDY
  • DOI:
    10.1016/s0735-1097(17)34139-6
  • 发表时间:
    2017-03-21
  • 期刊:
  • 影响因子:
  • 作者:
    Manan Pareek;Deepak L. Bhatt;Muthiah Vaduganathan;Tor Biering-Sørensen;Jacob E. Møller;Margrét Leósdóttir;Martin Magnusson;Peter M. Nilsson;Michael Olsen
  • 通讯作者:
    Michael Olsen
A high precision gas flow cell for performing in situ neutron studies of local atomic structure in catalytic materials.
高精度气体流动池,用于对催化材料中的局部原子结构进行原位中子研究。
  • DOI:
    10.1063/1.4978287
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Olds;K. Page;A. Paecklar;P. F. Peterson;Jue Liu;G. Rucker;Mariano Ruiz;Michael Olsen;Michelle D. Pawel;S. Overbury;J. Neilson
  • 通讯作者:
    J. Neilson
INCREASED HIGH SENSITIVITY C-REACTIVE PROTEIN IS ASSOCIATED WITH AORTIC VALVE REPLACEMENT IN PATIENTS WITH MILD TO MODERATE AORTIC VALVE STENOSIS: A SEAS SUBSTUDY
  • DOI:
    10.1016/s0735-1097(14)61922-7
  • 发表时间:
    2014-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Adam Blyme;Camilla Asferg;Olav Nielsen;Kurt Boman;Christa Gohlke-Baerwolf;Antero Kesniemi;Christoph Nienaber;Terje Pedersen;Simon Ray;Anne Rosseb;Ronnie Willenheimer;Kristian Wachtell;Michael Olsen
  • 通讯作者:
    Michael Olsen
Incidence and predictors of post-thrombotic syndrome in patients with proximal DVT in a real-world setting: findings from the GARFIELD-VTE registry
现实世界中近端 DVT 患者血栓后综合征的发生率和预测因素:GARFIELD-VTE 登记处的发现
  • DOI:
    10.1007/s11239-023-02895-7
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4
  • 作者:
    P. Prandoni;Sylvia Haas;M. Fluharty;S. Schellong;Harry Gibbs;Eric Tse;M. Carrier;B. Jacobson;H. ten Cate;E. Panchenko;P. Verhamme;K. Pieper;G. Kayani;L. A. Kakkar;Nik Akihiko Juan David Taylan David Walter Giancarlo M Abdullah Abiko Abril Acevedo Adademir Adler Ageno ;Nik Abdullah;Akihiko Abiko;Juan Abril;David Acevedo;T. Adademir;David Adler;W. Ageno;G. Agnelli;Mostafa Ahmed;Ahmet Aksoy;Serir Aktogu;Gholam Ali;Raz Alikhan;Gregory Allen;P. Angchaisuksiri;Sevestre Antoinette;Amy Arouni;Addala Azeddine;Tarek Azim;Wilfried Backer;Y. Balthazar;Soo Bang;M. Banyai;Olga Barbarash;Marcelo Barrionuevo;Mostafa Bary;Bektas Battaloglu;W. Bax;Terriat Béatrice;Steffen Behrens;D. Belenky;Juan Benitez;M. Berli;Peuch Bernadette;Andrea Berni;M. Betsbrugge;Adriaan Beyers;Abraham Bezuidenhout;Claude Bidi;Peter Bilderling;Laure Binet;Tina Biss;Luis Blasco;Erwin Blessing;Peter Blombery;J. Bono;K. Boomars;Juree Boondumrongsagoon;Lohana Borges;M. Bosch;Louis Botha;H. Bounameaux;T. Boussy;Margaret Bowers;Mikhail Boyarkin;Cornelia Brauer;Kate L. Burbury;Hana Burianova;Yuriy Burov;Cas Cader;R. Canevascini;L. Capiau;Roberto Cappelli;Boulon Carine;M. Carrier;Abu Carrim;Patrick Carroll;Tomas Casabella;H. Cate;Marco Cattaneo;Vladimir Cech;Luis Cervera;Seung Cha;Joseph Chacko;Kuan Chang;K. Chansung;Ting Chao;Anoop Chauhan;S. Chayangsu;Mariam Chetanachan;Lee Chew;Chern Chiang;Kuan Chiu;Won Choi;Ponchaux Christian;Brousse Christophe;Seinturier Christophe;Sanjeev Chunilal;Amanda Clark;Abdurrahim Colak;João Correa;B. Cosmi;Franco Cosmi;Z. Coufal;D. Creagh;L. Cristina;Carlos Cuneo;Garcia Dalmau;Garrigues Damien;Armando D’Angelo;H. Darius;Sudip Datta;Adriaan Dees;Mohamed Dessoki;C. Díaz;Enrique Diaz;Emre Dogan;Brisot Dominique;Elkouri Dominique;Stephan Dominique;Servaas Donders;Dmitry Dorokhov;Johan Duchateau;Norberto Duda;Grace Eddie;Hallah Elali;H. Eldin;Chevrier Elisa;Messas Emmanuel;Barbara Erdelyi;Frans Erdkamp;Ehab M. Esheiba;G. Esperón;Sherif Essameldin;T. Everington;Markus Faghih;Anna Falanga;J. Fedele;R. Ferkl;A. Fernandez;Manuel Fernandez;P. Ferrini;F. Ferroni;Jose Filho;Mark Fixley;John Fletcher;Oscar Flores;Couturaud Francis;Bergmann Francois;Hendrik Franow;Amr Gad;Mohamed Gaffar;Mary Gaffney;G. Gal;Javier Galvar;Angel Galvez;Marco Gamba;Gin Gan;V. Gerdes;Hagen Gerofke;Harry Gibbs;H. Gogia;Ivan Gordeev;Shinya Goto;Sam Griffin;Christina Gris;Ernst Grochenig;J. Gujral;Ozcan Gur;Orcun Gurbuz;Michel Gustin;Luis Guzman;Chung Ha;Ghassan Haddad;Dirk Hagemann;P. Hainaut;Muhammad Hameed;Terence Hart;Hatice Hasanoglu;Erman Hashas;Wilhelm Haverkamp;Desmurs Helene;Fitjerald Henry;Artur Herdy;Rika Herreweghe;Masao Hirano;Prahlad Ho;Wai Ho;G. Hollanders;Miroslav Homza;Thomas Horacek;Chien Hsia;Chien Huang;Chien Huang;Chun Huang;Julian Humphrey;Beverley Hunt;Azlan Husin;Hun Hwang;Piriyaporn Iamsai;Manuel Ibarra;D. Imberti;Mahe Isabelle;Selim Isbir;B. Jacobson;P. Janský;Weihong Jiang;D. Jiménez;Zhicheng Jing;Jin Joh;G. Kamalov;Junji Kanda;Masashi Kanemoto;N. Kanitsap;M. Kanko;Kemal Karaarslan;J. Kassis;Atsushi Kato;Andrey Kazakov;David Keeling;Reinhold Keim;Allan Kelly;Mohamed Khan;Bonnie Kho;Alexey Khotuntsov;Ho Kim;Igor Kim;JangYong Kim;Jin Kim;Moo Kim;Yang Kim;Ilker Kiris;R. Klamroth;A. Kleiban;Garry Klein;Katsuhiro Kondo;Martin Koretzky;Wolfgang Korte;Modise Koto;F. Koura;Michael Kovacs;Vladimir Krasavin;Alan Krichell;Knut Kroeger;Ralf Kroening;Jiri Krupicka;Emre Kubat;Dusan Kucera;Shintaro Kuki;Jen Kuo;J. Kvasnička;Chi Kwok;JiHyun Kwon;Wen Lai;Pavel Lang;Jose Lara;J. Laštůvka;Holger Lawall;Michael Leahy;Jae Lee;Moon Lee;Raul Leon;Siwe Léopold;Michael Levy;Igor Libov;Wei Lin;Ann Lockman;C. Lodigiani;Irene Looi;Luciano López;Ab Loualidi;Charles Lunn;Canhua Luo;T. Luvhengo;Shaun Maasdorp;Peter MacCallum;Andrew Machowski;Mujibur Majumder;N. Makruasi;W. Malek;Kubina Manuel;P. Marchena;Javier Marino;Rafael Martinez;Shunzo Matsuoka;A. Mazzone;Simon McRae;Stuart Mellor;Robert Mendes;G. Merli;Antoni Mestre;Escande Michèle;Saskia Middeldorp;Raimundo Miranda;Ahmed Mohamed;Monniaty Mohamed;M. Moia;Dorthe Møller;Serge Motte;Moustafa Moustafa;N. Mumoli;Yeung Mun;Michael Munch;J. Muntaner;Bisher Mustafa;P. Mutirangura;Martin Myriam;Sang Na;Mohamed Nagib;Hiroaki Nakamura;Mashio Nakamura;Satoshi Nakazawa;Seung Nam;Bhavesh Natha;Falvo Nicolas;J. Nielsen;L. Norasetthada;Nordiana Nordin;T. Numbenjapon;Ole Nyvad;Hans Ohler;Yasushi Ohnuma;Michael Olsen;Tomoya Onodera;Christian Opitz;Alisha Oropallo;R. Otero;Oztekin Oto;Jorge Paez;E. Panchenko;Félix Paredes;Jin Park;Yong Park;Nishen Paruk;Siriwimon Patanasing;Guillot Paul;Michel Pauw;Jose Peromingo;Dmitry Petrov;W. Pharr;Georg Plassmann;George Platt;Ivo Podpera;G. Poirier;D. Poli;E. Porreca;Domenico Prisco;R. Prosecký;Jiri Pumprla;Herbert Raedt;Rapule Ratsela;Selma Raymundo;Raquel Reyes;Tim Reynolds;L. Ria;P. Rojnuckarin;Dirk Roux;Ayman Salem;Rita Santoro;Jose Saraiva;J. Sathar;Ismail Savas;S. Schellong;Lilia Schiavi;Andor Schmidt;Renate Schmidt;Herman Schroe;M. Schul;C. Schwencke;David Scott;Gaurand Shah;Yoshisato Shibata;Jhih Shih;Hyeok Shim;Sherif Sholkamy;Kou Shyu;Rupesh Singh;Suaran Singh;D. Skowasch;A. Slocombe;Clifford Smith;German Sokurenko;Mosaad Soliman;S. Solymoss;Ik Song;Igor Sonkin;Joan Souto;Rudolf Spacek;Ilya Staroverov;Daniel Staub;H. Striekwold;Markus Stuecker;Y. Subbotin;Igor Suchkov;Shenghua Sun;J. Suriñach;T. Suwanban;Koscál Svatopluk;Jaromira Svobodova;Mersel Tahar;Kensuke Takeuchi;Y. Tanabe;Isabel Tenorio;Sophie Testa;Daniel Theodoro;Hongyan Tian;L. Tick;Luc Timmermans;Seng Ting;E. Tiraferri;Cheng Toh;See Toh;Vladimir Tolstikhin;Jorge Toro;A. Tosetto;Berremeli Toufek;B. Trimarco;Eric Tse;Wei Tseng;Hatice Turker;Kwo Ueng;E. Usandizaga;K. Vandenbosch;Jan Vanwelden;P. Verhamme;Jiri Vesely;Beatrice Vesti;P. Viboonjuntra;O. Vilamajó;Philippe Vleeschauwer;Haofu Wang;Shenming Wang;Chris Ward;Akinori Watanabe;Simon Watt;J. Welker;Rachel Wells;Kwan Wern;Jan Westendorf;Richard White;Benedicte Wilson;Lily Wong;Raymond Wong;S. Wongkhantee;Chau Wu;Chih Wu;Cynthia Wu;Jinghua Yang;Zhenwen Yang;Zhongqi Yang;Celal Yavuz;Erik Yeo;H. Yhim;Kai Yiu;Shuichi Yoshida;Winston Yoshida;C. Zaidman;Dmitry Zateyshchikov;Thomas Zeller;Stanislav Zemek;Lei Zhang;Weihua Zhang;Hong Zhu;Hesham Zidan;Brian Zidel;K. Zrazhevskiy;Nadezhda A. Zubareva.
  • 通讯作者:
    Nadezhda A. Zubareva.

Michael Olsen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Olsen', 18)}}的其他基金

Collaborative Research: Droplet breakup in homogenous turbulence: model validation through experiments and direct numerical simulations
合作研究:均匀湍流中的液滴破碎:通过实验和直接数值模拟进行模型验证
  • 批准号:
    2201707
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
RAPID/Collaborative Research: Investigation of the Effects of Rockfall Impacts on Structures During the Christchurch Earthquake Series
快速/合作研究:调查基督城地震系列期间落石对结构的影响
  • 批准号:
    1439883
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CAREER/CDS&E: Advanced, 3D Infrastructure Information Modeling Using Lidar
职业/CDS
  • 批准号:
    1351487
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID - Post-Disaster Structural Data Collection Following the 11 March 2011 Tohoku, Japan Tsunami
合作研究:RAPID - 2011 年 3 月 11 日日本东北海啸后的灾后结构数据收集
  • 批准号:
    1138699
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Nanoprecipitation in Turbulent Liquid-Phase Vortex Reactors: A Fundamental Investigation of Scale Up Using Experimentally Validated CFD Models
湍流液相涡旋反应器中的纳米沉淀:使用经过实验验证的 CFD 模型进行放大的基础研究
  • 批准号:
    0932978
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a High-Speed Particle Image Velocimetry System for Fluid Dynamics Research
MRI:采集用于流体动力学研究的高速粒子图像测速系统
  • 批准号:
    0521173
  • 财政年份:
    2005
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CAREER: Development of Microstructures for High Heat Flux Applications Utilizing Non-Intrusive Temperature and Velocity Measurement Techniques
职业:利用非侵入式温度和速度测量技术开发高热通量应用的微观结构
  • 批准号:
    0134469
  • 财政年份:
    2002
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似海外基金

Planning Grant: Engineering Research Center for Environmentally Applied Refrigerant Technology Hub (EARTH)
规划资助:环境应用制冷剂技术中心工程研究中心(EARTH)
  • 批准号:
    2123852
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Planning Grant: Engineering Research Center for Electrosymbiotic Engineering, Design, and Technology (CEED-TECH)
规划资助:电共生工程、设计和技术工程研究中心(CEED-TECH)
  • 批准号:
    2124088
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Planning Grant: Engineering Research Center for Food Resiliency through Engineered Supply Chains (FRESCH)
规划拨款:工程供应链食品弹性工程研究中心(FRESCH)
  • 批准号:
    2124189
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Planning Grant: Engineering Research Center for Innovative Built and Regenerative Environments for Advancing Timeless Habitability and Equity (I-BREATHE)
规划拨款:创新建筑和再生环境工程研究中心,促进永恒的宜居性和公平性(I-BREATHE)
  • 批准号:
    2124284
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Planning Grant: Engineering Research Center for Integrating Native Solutions to Promote and Inform Resilient Engineering (INSPIRE)
规划拨款:集成原生解决方案以促进和指导弹性工程的工程研究中心 (INSPIRE)
  • 批准号:
    2124356
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Planning Grant: Engineering Research Center for Next Generations of Wireless Telecommunication (WiTeC)
规划资助:下一代无线电信工程研究中心(WiTeC)
  • 批准号:
    2123946
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Planning Grant: Engineering Research Center for Accelerated Formulations Engineering (CAFE)
规划资助:加速制剂工程工程研究中心(CAFE)
  • 批准号:
    2124244
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Planning Grant: Engineering Research Center for Connected Eldercare
规划资助:互联养老工程研究中心
  • 批准号:
    2124319
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Planning Grant: Engineering Research Center for Symbiotic Systems
规划资助:共生系统工程研究中心
  • 批准号:
    2124141
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Planning Grant: Engineering Research Center for the Next-generation Enterprise to Engineer Diagnostics at Low-cost for the home-Ecosystem (NEEDLE)
规划补助金:下一代企业工程研究中心以低成本为家庭生态系统设计诊断(NEEDLE)
  • 批准号:
    2124312
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了