CAREER: Interplay of topology and geometry in materials with strong spin-orbit coupling
职业:具有强自旋轨道耦合的材料中拓扑和几何的相互作用
基本信息
- 批准号:1351895
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technical SummaryThis CAREER grant, supported by the Division of Materials Research, aims to transform our understanding of the relationship between spin-orbit coupling and visco-elastic transport in electron systems. The sensitivity of materials with strong spin-orbit coupling to local orbital orientation requires a reformation of the conventional visco-elastic response theories, and leaves open the possibility for undiscovered topological transport phenomena that are universal and quantized. The proposed theory draws on ideas from high-energy physics and gravitation that are adapted to condensed matter and then used to predict phenomena in real materials, and to resolve a controversy in the high-energy community on the role of torsion in the chiral anomaly that will only be solved with condensed matter insight.The set of materials to which these developments apply is broad, experimentally accessible, and at the forefront of modern research activity. The set includes: topological insulators, topological Weyl semi-metals, and spin-orbit coupled semiconductor heterostructures/quantum wires. Using quantum and semi-classical techniques, the visco-elastic transport in these materials will be analyzed to identify new phenomena and to predict the values of the transport coefficients. The landmark phenomenon that will be studied first is the dissipationless topological viscosity found in 2d time-reversal breaking topological insulators. Along with the study of realistic materials, there are deep conceptual issues that will be resolved regarding the relationship between topological transport, the geometry of elastic deformations, and quantum field theory. Non-Technical SummaryOne of the key goals of condensed matter physics is to find properties of complex systems that are universal, i.e., properties that are independent of the complicated details inherent in real materials. Remarkably, the so-called topological electronic properties of a material are so insensitive to details that they can be quantitatively predicted to exquisite precision even when crude models are employed. In fact, topological properties are so remarkable that the first discovery of one in the early 1980s, the quantized Hall conductivity, led to two Nobel prizes and measurements that were so accurate that they now serve as the SI standard for units of resistance. In the past 10 years many new families of phases of matter which each exhibit special types of topological properties have been theoretically predicted and experimentally discovered. While most of the focus has been on how these materials respond to purely electromagnetic probes, this CAREER proposal seeks to understand how these systems respond to essentially changes of shape. Unlike the field of topology, geometry is interested in precise definitions of lengths and shapes, and thus is an extra level of detail on top of the broad topological features. However, in these materials there is an important interplay between the topological electronic properties and the geometry of the material. The exciting thing is that even when we consider detail-dependent geometrical probes, the outcome can end up being a robust topological property. Thus, when geometry and topology compete, sometimes topology can still win. The set of materials to which these developments apply is broad, experimentally accessible, and at the forefront of modern research activity. The topological quantities studied here are an untapped resource that is sure to lead to quantum phenomena that can be incorporated into unique devices. This technological impact, coupled with the valuable interchange of ideas, developed during this line of research, between the fields of high-energy physics, gravitation, and condensed matter indicate the broadness of this grant. In addition, this CAREER is dedicated to the integration of undergraduates into cutting-edge research, and the training of undergraduates, graduate students, and postdoctoral researchers in communication and research skills that will benefit their future careers.
技术摘要本CAREER补助金由材料研究部支持,旨在改变我们对电子系统中自旋轨道耦合和粘弹性输运之间关系的理解。具有强自旋-轨道耦合的材料对局部轨道取向的敏感性需要对传统的粘弹性响应理论进行改革,并为未发现的普遍和量子化的拓扑输运现象提供了可能性。该理论借鉴了高能物理学和引力的思想,这些思想适用于凝聚态物质,然后用于预测真实的材料中的现象,并解决了高能社区中关于扭转在手征异常中的作用的争议,该争议只能通过凝聚态物质的洞察力来解决。这些发展适用的材料集广泛,实验上可以实现,站在现代研究活动的最前沿该系列包括:拓扑绝缘体,拓扑外尔半金属,自旋轨道耦合半导体异质结构/量子线。使用量子和半经典技术,在这些材料中的粘弹性输运将被分析,以确定新的现象,并预测输运系数的值。首先要研究的具有里程碑意义的现象是在2D时间反转破坏拓扑绝缘体中发现的无耗散拓扑粘性。沿着对现实材料的研究,还有关于拓扑输运、弹性形变几何和量子场论之间关系的深层次概念问题有待解决。凝聚态物理学的关键目标之一是找到复杂系统的普适性质,即,这些特性与真实的材料中固有的复杂细节无关。 值得注意的是,材料的所谓拓扑电子性质对细节是如此不敏感,以至于即使使用粗糙的模型,它们也可以精确地定量预测。事实上,拓扑性质是如此引人注目,以至于在20世纪80年代初首次发现了量子化霍尔电导率,导致了两次诺贝尔奖和测量,这些测量是如此精确,以至于它们现在成为电阻单位的SI标准。在过去的10年里,许多新的物质相家族,每一个都表现出特殊类型的拓扑性质,已经被理论预测和实验发现。虽然大部分的焦点都集中在这些材料如何对纯电磁探针做出反应,但这项CAREER提案旨在了解这些系统如何对形状的基本变化做出反应。与拓扑学领域不同,几何学对长度和形状的精确定义感兴趣,因此是广泛拓扑特征之上的额外细节层次。 然而,在这些材料中,拓扑电子性质和材料的几何形状之间存在重要的相互作用。令人兴奋的是,即使我们考虑依赖于细节的几何探测,结果最终也可能是一个鲁棒的拓扑性质。因此,当几何学和拓扑学竞争时,有时拓扑学仍然可以获胜。 这些发展所适用的材料是广泛的,实验上可访问的,并在现代研究活动的最前沿。这里研究的拓扑量是一个未开发的资源,肯定会导致量子现象,可以纳入独特的设备。这种技术的影响,再加上宝贵的思想交流,在这条研究线上,高能物理,引力和凝聚态之间的领域发展表明了这个补助金的广泛性。此外,这个职业是致力于本科生融入前沿研究,并在通信和研究技能,这将有利于他们未来的职业本科生,研究生和博士后研究人员的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taylor Hughes其他文献
The current and future global burden of cancer among adolescents and young adults: a population-based study
青少年和年轻人中当前及未来癌症的全球负担:一项基于人群的研究
- DOI:
10.1016/s1470-2045(24)00523-0 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:35.900
- 作者:
Taylor Hughes;Andrew Harper;Sumit Gupta;A Lindsay Frazier;Winette T A van der Graaf;Florencia Moreno;Adedayo Joseph;Miranda M Fidler-Benaoudia - 通讯作者:
Miranda M Fidler-Benaoudia
Structural Insights into Ligand Modulation of the TRPV2 Channel
- DOI:
10.1016/j.bpj.2018.11.2435 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Ruth Pumroy;Amrita Samanta;Yuhang Liu;Franklin Pozo;Taylor Hughes;George R. Dubyak;Seungil Han;David T. Lodowski;Vera Moiseenkova-Bell - 通讯作者:
Vera Moiseenkova-Bell
Spin-selective tunneling from nanowires of the candidate topological Kondo insulator SmB6
候选拓扑近藤绝缘体 SmB6 纳米线的自旋选择性隧道效应
- DOI:
10.1126/science.abj8765 - 发表时间:
2022-09 - 期刊:
- 影响因子:56.9
- 作者:
Anuva Aishwarya;Zhuozhen Cai;Arjun Raghavan;Marisa Romanelli;Xiaoyu Wang;Xu Li;G. D. Gu;Mark Hirsbrunner;Taylor Hughes;刘飞;Lin Jiao;Vidya Madhavan - 通讯作者:
Vidya Madhavan
Gating of TRPV5 Channel Activity by Phosphorylation and Exogenous Ligands
- DOI:
10.1016/j.bpj.2020.11.2104 - 发表时间:
2021-02-12 - 期刊:
- 影响因子:
- 作者:
Edwin C. Fluck;Taylor Hughes;Ruth Pumroy;Vera Moiseenkova-Bell - 通讯作者:
Vera Moiseenkova-Bell
Pharmacokinetics of direct oral anticoagulants after bariatric surgery: A retrospective cohort study.
减肥手术后直接口服抗凝剂的药代动力学:一项回顾性队列研究。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:7.5
- 作者:
Barbara Gunka;Danielle Mackenzie;Taylor Hughes;Laurie Sardo;Julia Bayadinova;D. Siegal;E. K. Tseng;A. Doumouras;S. Mithoowani - 通讯作者:
S. Mithoowani
Taylor Hughes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taylor Hughes', 18)}}的其他基金
REU Site: Applying the Tools of Physics to Explore the Macroscopic, Microscopic, and Quantum Worlds
REU 网站:应用物理工具探索宏观、微观和量子世界
- 批准号:
1950744 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
LEAPS-MPS: Unveiling the Interplay of Chiral Transport, Magnetism, and Topology in Weyl Magnets: A Magneto-Optical Investigation
LEAPS-MPS:揭示外尔磁体中手性输运、磁性和拓扑的相互作用:磁光研究
- 批准号:
2317013 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
The interplay between topology, geometry and correlations in novel materials
新型材料中拓扑、几何和相关性之间的相互作用
- 批准号:
2594335 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Studentship
Interplay between topology and thermal fluctuation in skyrmion-hosting materials
斯格明子材料中拓扑结构和热波动之间的相互作用
- 批准号:
20K14410 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Interplay of Symmetry and Topology in Condensed Matter Systems
职业:凝聚态系统中对称性和拓扑的相互作用
- 批准号:
1846109 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Interplay of symmetry and topology in gapped phases of condensed matter systems
凝聚态系统有隙相中对称性和拓扑的相互作用
- 批准号:
1824632 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Interplay of Topology and Geometry in Polymeric Critical Phenomena
聚合物临界现象中拓扑和几何的相互作用
- 批准号:
DP160103562 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Discovery Projects
Transport phenomena induced by the interplay of topology and symmetry in topological superconductors
拓扑超导体中拓扑和对称性相互作用引起的输运现象
- 批准号:
16K05448 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interplay of symmetry and topology in gapped phases of condensed matter systems
凝聚态系统有隙相中对称性和拓扑的相互作用
- 批准号:
1519579 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Interplay between symmetry breaking, quasiparticles and their topology in quantum condensed matter systems.
量子凝聚态物质系统中对称破缺、准粒子及其拓扑之间的相互作用。
- 批准号:
1506756 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Simulations of weak polyelectrolytes: interplay of acid-base equilibria, ion correlations and polymer topology
弱聚电解质的模拟:酸碱平衡、离子相关性和聚合物拓扑的相互作用
- 批准号:
249041160 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Research Grants