The interplay between topology, geometry and correlations in novel materials
新型材料中拓扑、几何和相关性之间的相互作用
基本信息
- 批准号:2594335
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In this project we will consider hydrodynamic electron transport in various strongly-correlated 2Dmaterials. The goal is to derive equations describing the motion of electrons in these systems andsolve them for certain simple geometries. An intriguing possibility is to combine the somewhat"semiclassical" hydrodynamic description with the quantum nature of particles, which are in factcharacterized by discrete spin, pseudospin, valley, layer degrees of freedom. These are, quitegenerally, coupled to the particle kinetic momentum and endow electrons with non-trivial Berryphases. In turn, when the electron momentum varies (as a consequence of external potentials orcollisions), particles "skew" in the orthogonal direction, producing measurable effects. The interplaybetween strong correlations, hydrodynamic transport and the Berry phases of particles in twisted 2Dmaterials is a new and unexplored field.In this project we will:- derive equations of motions for electron in twisted bilayer graphene, both in flat and upper bands,where mobility is very high, accounting for the role of strong interactions, band renormalization,and the coupling between pseudospin/layer/valley indices with kinetic momentum;- solve the above-derived equations in simple but experimentally relevant geometries (channels,constrictions, etc.), addressing a wide range of densities and temperatures - from Fermi liquid toelectron-hole-plasma regime;- understand how Berry phases impact on the collision integral and therefore on viscositiesappearing in electrons' hydrodynamic equations. We will therefore study the emergence of "twobodyside jump" phenomena and calculate transport coefficients and relaxation times;- extend these results to other flat-band materials, such as transition-metal dichalcogenides, whereelectrons feature spin-orbit coupling and describe a new regime for spintronics.During this project the student will gain a knowledge of 2D materials, modern theory of transport andhydrodynamics, all of them hot research topics at the moment. Moreover, he/she will learn how toemploy modern field theoretical methods (Green functions, perturbation theory, Keldysh) to tacklemany-body transport problems in condensed matter physics. Finally, he/she will also develop and/orenhance computational skills by using Mathematica/Python to solve some of the problem numerically.
在这个项目中,我们将考虑各种强关联二维材料中的流体动力学电子输运。目标是推导出描述电子在这些系统中运动的方程,并在某些简单的几何形状下求解它们。一个有趣的可能性是将有点“半经典”的流体动力学描述与粒子的量子性质结合起来,粒子的量子性质实际上是由离散的自旋、赝自旋、谷、层自由度表征的。这些都是,quitegenerally,耦合到粒子的动力学动量,并赋予电子与非平凡的贝里相位。反过来,当电子动量变化时(由于外部电势或碰撞),粒子在正交方向上“歪斜”,产生可测量的效应。强关联、流体动力学输运和扭曲二维材料中粒子的Berry相之间的相互作用是一个新的和未探索的领域。在这个项目中,我们将:-推导扭曲双层石墨烯中电子的运动方程,包括平带和上带,其中迁移率非常高,解释了强相互作用、带重整化以及赝自旋/层/谷指数与动力学动量之间的耦合的作用;- 以简单但实验相关的几何形状(通道、收缩部等)求解上述导出的方程,解决广泛的密度和温度范围-从费米液体到电子-空穴-等离子体体系;-了解Berry相如何影响碰撞积分,从而影响电子流体动力学方程中出现的粘性。因此,我们将研究“两体侧跳”现象的出现,并计算输运系数和弛豫时间;- 将这些结果扩展到其他平带材料,如过渡金属二硫属化物,其中电子具有自旋轨道耦合的特征,并描述了自旋电子学的新领域。在这个项目中,学生将获得二维材料,现代输运理论和流体力学的知识,都是目前的热门研究课题。此外,他/她将学习如何运用现代场论方法(绿色函数,微扰论,Keldysh)来解决凝聚态物理中的任何物体输运问题。最后,他/她还将通过使用Mathematica/Python来解决一些数值问题来发展和提高计算技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Interactions between geometry, topology, number theory, and dynamics
几何、拓扑、数论和动力学之间的相互作用
- 批准号:
2303572 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Interactions between topology and geometry in low dimensions
低维拓扑和几何之间的相互作用
- 批准号:
2750813 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Interactions between topology, model theory, and operator algebras
拓扑、模型理论和算子代数之间的相互作用
- 批准号:
RGPIN-2021-02459 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
The True Relationship between "Precursor" Phenomena, Magnetic Topology, and Solar Energetic Events
“前驱”现象、磁拓扑和太阳高能事件之间的真实关系
- 批准号:
2154653 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Interactions between dynamics, topology and combinatorics in low dimensions
低维动力学、拓扑学和组合学之间的相互作用
- 批准号:
2749484 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Interactions between geometric group theory and topology
几何群论与拓扑学之间的相互作用
- 批准号:
2625336 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Topological bridges between circuits, models, and behavior
电路、模型和行为之间的拓扑桥梁
- 批准号:
10208403 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Interactions between topology, model theory, and operator algebras
拓扑、模型理论和算子代数之间的相互作用
- 批准号:
RGPIN-2021-02459 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Topology Between Dimensions Three and Four
三维和四维之间的拓扑
- 批准号:
2104144 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant