CAREER: Stability and Dynamics of Tissue Cell Assemblies in Yield Stress Materials
职业:屈服应力材料中组织细胞组件的稳定性和动力学
基本信息
- 批准号:1352043
- 负责人:
- 金额:$ 48.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical Summary:This CAREER award by the Biomaterials program in the Division of Materials Research to University of Florida is to investigate biological systems from a perspective of condensed matter physics by employing the modern materials and tools of engineering and materials science. This award is cofunded by Biomechanics and Mechanobiology program in the Division of Civil, Mechanical, and Manufacturing Innovation(ENG/CMMI). To recruit and retain a diverse student population, the educational objectives of this proposal are to diminish stereotypical views of Mechanical Engineering discipline by systematically integrating soft matter topics into undergraduate curriculum and extra-curricular activities. Persistent exposure to interdisciplinary topics will be provided to all Mechanical Engineering majors throughout their undergraduate careers in the form of lectures, labs, career advising, and an extramural field courses in collaboration with a marine research laboratory. The proposed education and research activities are integrated; the materials in the proposed research will be used in teaching, and the education strategy is expected to grow the pool of potential students for research activities. The proposed education plan is to shift the demographic makeup of a large, traditionally homogeneous field. Education activities target underrepresented groups in STEM fields and proposes to increase their participation in STEM related research in academia and industry. The proposed research creates a new platform for 3D cell culture with potential social benefits; the development of a new effective cellular biomaterial may advance biomaterials research, biomedical research, biomedical technology, and medicine. The most likely potential impacts would occur in wound healing and tissue engineering technologies. In the treatment of acute wounds, for example, biocompatible yield stress materials could be ideal wound healing scaffolds. Analogous to 'bone putty', these materials can be extruded as a fluid to completely fill a topographically complex wound, and solidifying very quickly.Technical Summary:This CAREER award by the Biomaterials program in the Division of Materials Research to University of Florida is to investigate biological systems from a perspective of condensed matter physics by employing the modern materials and tools of engineering and materials science. This award is cofunded by Biomechanics and Mechanobiology program in the Division of Civil, Mechanical, and Manufacturing Innovation(ENG/CMMI). The proposed research objective is to leverage the basic physics of instability, topology and symmetry to study tissue cell dynamics. Cell assemblies will be 3D printed by the direct extrusion of structures into volumes of yield stress material. Yield stress materials are solids when applied stress is low; and they are fluids when stress is high. The combination of cells and yield-stress materials provides unprecedented control of variables like size, shape, symmetry, and topology in multicellular structures. The main focus of this proposal is to study: (1) mechanical instabilities in simple structures to classify and measure collective cell forces; and 2) the role of symmetry and topology of complex multicellular structures in collective cell dynamics. The proposed investigation of the yield-stress cellular biomaterial is significant because it: (1) creates a superior platform for carrying out fundamental investigations of 3D cell dynamics; (2) creates a new class of biomaterial never before investigated; and (3) explores fundamental aspects of collective cell dynamics that previously could not be done due to limitations of available support materials. The proposed activities are founded on a new concept that breaks away from the established paradigm in cellular biomaterials, potentially advancing knowledge in the areas of basic tissue mechanics and physiology, tissue culture methodology, and cellular biomaterial science and engineering. The proposed educational efforts incorporate extensive data collection of the students' perspective of Mechanical Engineering, demographic attrition rates, and job placement. This data would provide new knowledge about the causes and remedies of the historical lack of diversity in student population enrolled in mechanical engineering courses.
非技术摘要:佛罗里达大学材料研究部生物材料项目颁发的这一职业奖旨在利用现代材料以及工程和材料科学的工具,从凝聚态物理的角度研究生物系统。该奖项由土木、机械和制造创新部门(ENG/CMMI)的生物力学和机械生物学项目共同资助。为了招收和留住多元化的学生群体,该提案的教育目标是通过将软物质主题系统地融入本科课程和课外活动,减少对机械工程学科的刻板印象。所有机械工程专业的学生将在整个本科生涯中以讲座、实验室、职业咨询以及与海洋研究实验室合作的校外现场课程的形式持续接触跨学科主题。 拟议的教育和研究活动是一体化的;拟议研究中的材料将用于教学,教育战略预计将扩大从事研究活动的潜在学生群体。拟议的教育计划旨在改变一个传统上同质的大型领域的人口构成。教育活动针对 STEM 领域代表性不足的群体,并建议增加他们对学术界和工业界 STEM 相关研究的参与。拟议的研究为 3D 细胞培养创建了一个具有潜在社会效益的新平台;新型有效细胞生物材料的开发可能会推动生物材料研究、生物医学研究、生物医学技术和医学。最有可能的潜在影响将发生在伤口愈合和组织工程技术中。例如,在急性伤口的治疗中,生物相容性屈服应力材料可能是理想的伤口愈合支架。类似于“骨泥”,这些材料可以被挤压成液体,完全填充地形复杂的伤口,并很快凝固。技术摘要:佛罗里达大学材料研究部生物材料项目颁发的这项职业奖旨在通过采用工程和材料科学的现代材料和工具,从凝聚态物理的角度研究生物系统。该奖项由土木、机械和制造创新部门(ENG/CMMI)的生物力学和机械生物学项目共同资助。拟议的研究目标是利用不稳定性、拓扑和对称性的基本物理学来研究组织细胞动力学。电池组件将通过直接将结构挤压成大量屈服应力材料来进行 3D 打印。当施加的应力较低时,屈服应力材料是固体;当压力很大时它们是液体。细胞和屈服应力材料的组合提供了对多细胞结构中的尺寸、形状、对称性和拓扑等变量的前所未有的控制。该提案的主要重点是研究:(1)简单结构中的机械不稳定性,以分类和测量集体细胞力; 2)复杂多细胞结构的对称性和拓扑在集体细胞动力学中的作用。拟议的屈服应力细胞生物材料研究具有重要意义,因为它:(1) 为进行 3D 细胞动力学基础研究创建了一个优越的平台; (2)创造了一种以前从未研究过的新型生物材料; (3) 探索集体细胞动力学的基本方面,这在以前由于可用支持材料的限制而无法完成。拟议的活动建立在一个新概念的基础上,该概念打破了细胞生物材料的既定范式,有可能推进基础组织力学和生理学、组织培养方法以及细胞生物材料科学与工程领域的知识。拟议的教育工作包括广泛收集学生对机械工程的看法、人口流失率和就业安置的数据。这些数据将提供有关机械工程课程学生群体历史上缺乏多样性的原因和补救措施的新知识。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Commercially available microgels for 3D bioprinting
- DOI:10.1016/j.bprint.2018.e00037
- 发表时间:2018-09
- 期刊:
- 影响因子:0
- 作者:C. S. O’Bryan;Tapomoy Bhattacharjee;Samantha L. Marshall;W. Sawyer;T. Angelini
- 通讯作者:C. S. O’Bryan;Tapomoy Bhattacharjee;Samantha L. Marshall;W. Sawyer;T. Angelini
Liquid-like Solids Support Cells in 3D
- DOI:10.1021/acsbiomaterials.6b00218
- 发表时间:2016-10-01
- 期刊:
- 影响因子:5.8
- 作者:Bhattacharjee, Tapomoy;Gil, Carmen J.;Angelini, Thomas E.
- 通讯作者:Angelini, Thomas E.
Stability of High Speed 3D Printing in Liquid-Like Solids
- DOI:10.1021/acsbiomaterials.6b00184
- 发表时间:2016-10-01
- 期刊:
- 影响因子:5.8
- 作者:LeBlanc, Kyle J.;Niemi, Sean R.;Angelini, Thomas E.
- 通讯作者:Angelini, Thomas E.
Three-dimensional printing with sacrificial materials for soft matter manufacturing
- DOI:10.1557/mrs.2017.167
- 发表时间:2017-08-01
- 期刊:
- 影响因子:5
- 作者:O'Bryan, Christopher S.;Bhattacharjee, Tapomoy;Angelini, Thomas E.
- 通讯作者:Angelini, Thomas E.
3D T cell motility in jammed microgels
- DOI:10.1088/1361-6463/aae813
- 发表时间:2019-01-09
- 期刊:
- 影响因子:3.4
- 作者:Bhattacharjee, Tapomoy;Angelini, Thomas E.
- 通讯作者:Angelini, Thomas E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Angelini其他文献
Regeneration in the ctenophore Mnemiopsis leidyi occurs in the absence of a blastema, requires cell division, and is temporally separable from wound healing
栉水母 Mnemiopsis leidyi 的再生发生在没有芽基的情况下,需要细胞分裂,并且与伤口愈合暂时分离
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:5.4
- 作者:
Julia Ramon;S. Ellison;Thomas Angelini;M. Martindale - 通讯作者:
M. Martindale
Thomas Angelini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Angelini', 18)}}的其他基金
Collaborative Research: In Vitro Epithelial Lubrication: Collective Motion, Mechanics, and Fluid Transport
合作研究:体外上皮润滑:集体运动、力学和流体传输
- 批准号:
2104429 - 财政年份:2021
- 资助金额:
$ 48.38万 - 项目类别:
Standard Grant
3D Multicellular Mechanics in Angiogenesis
血管生成中的 3D 多细胞力学
- 批准号:
1161967 - 财政年份:2012
- 资助金额:
$ 48.38万 - 项目类别:
Standard Grant
相似国自然基金
随机激励下多稳态系统的临界过渡识别及Basin Stability分析
- 批准号:11872305
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
An Investigation into the Stability and Dynamics of the Antarctic Peninsular Ice Sheet During the Last Deglaciation
末次冰消期南极半岛冰盖的稳定性和动力学研究
- 批准号:
2843365 - 财政年份:2023
- 资助金额:
$ 48.38万 - 项目类别:
Studentship
Dynamics of Partial Differential Equations: Topological Implications for Stability and Analysis in Higher Spatial Dimensions
偏微分方程的动力学:更高空间维度稳定性和分析的拓扑含义
- 批准号:
2205434 - 财政年份:2022
- 资助金额:
$ 48.38万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics and Stability of Multi-Component Lipid Vesicles in Flow
合作研究:多组分脂质囊泡流动的动力学和稳定性
- 批准号:
2147560 - 财政年份:2022
- 资助金额:
$ 48.38万 - 项目类别:
Standard Grant
Modeling Coriolis and stability effects on wake dynamics for wind farm flow control
风电场流量控制中尾流动力学的科里奥利力和稳定性影响建模
- 批准号:
2226053 - 财政年份:2022
- 资助金额:
$ 48.38万 - 项目类别:
Standard Grant
NSF-DFG Confine: Structure, dynamics, and electrochemical stability of concentrated electrolytes in confined spaces
NSF-DFG Confine:受限空间中浓电解质的结构、动力学和电化学稳定性
- 批准号:
2223407 - 财政年份:2022
- 资助金额:
$ 48.38万 - 项目类别:
Standard Grant
Impact of myelin dynamics on functional network stability and memory persistence
髓磷脂动力学对功能网络稳定性和记忆持久性的影响
- 批准号:
RGPIN-2018-05967 - 财政年份:2022
- 资助金额:
$ 48.38万 - 项目类别:
Discovery Grants Program - Individual
The impact of life-history trait evolution on the stability of population dynamics
生活史性状进化对种群动态稳定性的影响
- 批准号:
RGPIN-2018-05189 - 财政年份:2022
- 资助金额:
$ 48.38万 - 项目类别:
Discovery Grants Program - Individual
Function and Mechanisms of Epigenetic Stability and Dynamics in Arabidopsis
拟南芥表观遗传稳定性和动态的功能和机制
- 批准号:
10669661 - 财政年份:2022
- 资助金额:
$ 48.38万 - 项目类别:
Collaborative Research: Dynamics and Stability of Multi-Component Lipid Vesicles in Flow
合作研究:多组分脂质囊泡流动的动力学和稳定性
- 批准号:
2147559 - 财政年份:2022
- 资助金额:
$ 48.38万 - 项目类别:
Standard Grant
CAREER: Identifying Ecosystem Properties Promoting Stability and Resistance: Modeling Late Ordovician Paleocommunity Dynamics and Functioning Across the Richmondian Invasion
职业:识别生态系统特性,促进稳定性和抵抗力:模拟晚奥陶世古群落动态和里士满入侵期间的功能
- 批准号:
2246395 - 财政年份:2022
- 资助金额:
$ 48.38万 - 项目类别:
Continuing Grant