CAREER: Research on Weather and Climate Impacts of Land Use and Land Cover (LULC) Change--Supporting Technology-Driven Science Inquiry as Pedagogy

职业:土地利用和土地覆盖(LULC)变化的天气和气候影响研究——支持技术驱动的科学探究作为教学法

基本信息

  • 批准号:
    1352046
  • 负责人:
  • 金额:
    $ 74.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-05-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

The impacts of Land Use and Land Cover (LULC) change on weather and climate are expected to vary depending upon the island geometry (size, aspect ratio and shoreline shape) and terrain. A conceptual understanding of such variations will be established though idealized numerical modeling experiments (NME). The concept developed will be used to analyze more realistic NME, investigating the weather and climate impacts of observed LULC changes (2000-2010) in the maritime continent, which exerts an important influence on tropical climate. Educational aspects of this project is the integration of Polaris, a discovery engine designed for operating on big data, with NME outputs generated from the Principal Investigator's (PI) research (past, ongoing and future) to transition from a deductive to inductive methodology for teaching of graduate level courses in Atmospheric Dynamics.Intellectual Merit :LULC change can have a substantial impact on weather and climate, but varies in complex fashion depending upon geographical setting, especially terrain and continentality. A conceptual framework for understanding the geographic variability is gradually emerging from prior studies, including those of the PI. The research activities will lead to an important addition to this framework, namely the impact LULC change in the context of island settings, and improved understanding of the effect of deforestation in the maritime continent. Note that the influence of the maritime continent on tropical climate is disproportionate to its land area, contributing to 40% of latent heating in the global tropics (~twice compared to continental convection). A large portion occurs in the vicinity of small islands as sea breeze initiated convection and is potentially impacted by LULC changes. Thus the proposed research is relevant and important, especially in the context of the IPCC determination that radiative forcing caused by land-atmosphere interactions is not well quantified, and is one of the key uncertainties. Whereas tools for big data analysis are becoming more common in field of Atmospheric Science, incorporation of this capability in classroom settings is lacking. Analysis of large datasets to establish relationship between atmospheric variables relevant to a phenomenon, and inferring the nature of theoretical framework needed to analyze it is an effective method for teaching of Atmospheric Dynamics. Learning in such an inductive setting mimics the natural development of the field. However, the pedagogy required for this purpose is also lacking. The PI addresses these critical gaps through integration of his research and educational activities.Broader Impacts :The LULC change impacts could be exacerbating or mitigating the effects large scale climate trends in the maritime continent. For some island settings, deforestation could lead to decrease in rainfall over agricultural regions and thus the concern that increase in productivity gained from expanding the crop lands may be negated by reduced rainfall caused by deforestation. Thus the results from this study have the potential to inform and lead to better policy formulation regarding climate change mitigation and sustainable environmental management. Atmospheric dynamics is often a very difficult course for students in atmospheric science. The teaching method developed via this award has the potential to transition students from mimicry to mastery, improving research creativity and retention in graduate programs. The proposed educational portal will document and share the big data supported inductive pedagogy with a wider community, allowing continued evolution from other educators and students.
土地利用和土地覆盖 (LULC) 变化对天气和气候的影响预计会因岛屿几何形状(大小、纵横比和海岸线形状)和地形而异。将通过理想化数值模拟实验(NME)建立对此类变化的概念性理解。开发的概念将用于分析更现实的 NME,调查海洋大陆观测到的 LULC 变化(2000-2010 年)对天气和气候的影响,这对热带气候产生重要影响。该项目的教育方面是将 Polaris(一种专为大数据操作而设计的发现引擎)与首席研究员 (PI) 研究(过去、正在进行和未来)生成的 NME 输出相集成,以从演绎法过渡到归纳法,用于大气动力学研究生水平课程的教学。智力优点:LULC 变化会对天气和气候产生重大影响,但会根据地理情况以复杂的方式变化。 环境,特别是地形和大陆性。先前的研究(包括 PI 的研究)正在逐渐形成用于理解地理变异性的概念框架。研究活动将为该框架带来重要补充,即岛屿背景下土地利用和土地利用变化的影响,并加深对海洋大陆森林砍伐影响的了解。请注意,海洋大陆对热带气候的影响与其陆地面积不成比例,占全球热带地区潜热的 40%(约是大陆对流的两倍)。大部分发生在小岛屿附近,因为海风引发对流,并可能受到土地利用和土地利用变化的影响。因此,所提出的研究是相关且重要的,特别是在IPCC确定陆地-大气相互作用引起的辐射强迫没有得到很好的量化,并且是关键的不确定性之一的背景下。尽管大数据分析工具在大气科学领域变得越来越普遍,但在课堂环境中缺乏这种能力。分析大型数据集以建立与某一现象相关的大气变量之间的关系,并推断分析所需的理论框架的性质,是大气动力学教学的有效方法。在这样的归纳环境中学习模仿了该领域的自然发展。然而,也缺乏实现这一目的所需的教学法。 PI 通过整合他的研究和教育活动来解决这些关键差距。更广泛的影响:土地利用和土地利用变化的影响可能会加剧或减轻海洋大陆大规模气候趋势的影响。对于一些岛屿环境,森林砍伐可能导致农业地区降雨量减少,因此人们担心,扩大农田所带来的生产力提高可能会因森林砍伐造成的降雨量减少而被抵消。因此,这项研究的结果有可能为减缓气候变化和可持续环境管理方面的政策提供信息并导致更好的政策制定。对于大气科学专业的学生来说,大气动力学通常是一门非常困难的课程。通过该奖项开发的教学方法有可能使学生从模仿过渡到掌握,提高研究创造力和研究生课程的保留率。拟议的教育门户将记录并与更广泛的社区共享大数据支持的归纳教学法,从而允许其他教育工作者和学生不断发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Udaysankar Nair其他文献

Udaysankar Nair的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Udaysankar Nair', 18)}}的其他基金

Collaborative Research: The Great Plains Irrigation Experiment (GRAINEX) for Understanding the Influence of Irrigation on the Planetary Boundary Layer and Weather Events
合作研究:大平原灌溉实验(GRAINEX),用于了解灌溉对行星边界层和天气事件的影响
  • 批准号:
    1720477
  • 财政年份:
    2017
  • 资助金额:
    $ 74.83万
  • 项目类别:
    Continuing Grant
Influence of Land Use and Landscape Heterogeneity on Cloud Formation and Atmospheric Circulation in Southwest Australia
澳大利亚西南部土地利用和景观异质性对云形成和大气环流的影响
  • 批准号:
    0523583
  • 财政年份:
    2005
  • 资助金额:
    $ 74.83万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

REU Site: Research Experience for Undergraduates in Resilience Against Extreme Weather Events
REU 网站:本科生抵御极端天气事件的研究经验
  • 批准号:
    2349250
  • 财政年份:
    2024
  • 资助金额:
    $ 74.83万
  • 项目类别:
    Standard Grant
Collaborative Research: NNA Research: Electric Vehicles in the Arctic (EVITA) - Interactions with Cold Weather, Microgrids, People, and Policy
合作研究:NNA 研究:北极电动汽车 (EVITA) - 与寒冷天气、微电网、人员和政策的相互作用
  • 批准号:
    2318385
  • 财政年份:
    2024
  • 资助金额:
    $ 74.83万
  • 项目类别:
    Standard Grant
Collaborative Research: NNA Research: Electric Vehicles in the Arctic (EVITA) - Interactions with Cold Weather, Microgrids, People, and Policy
合作研究:NNA 研究:北极电动汽车 (EVITA) - 与寒冷天气、微电网、人员和政策的相互作用
  • 批准号:
    2318384
  • 财政年份:
    2024
  • 资助金额:
    $ 74.83万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
  • 批准号:
    2320148
  • 财政年份:
    2023
  • 资助金额:
    $ 74.83万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OPP-PRF: Investigating Polar Geomagnetic Signatures Associated with Substorm Onset to Address Data Gaps in Southern Hemisphere Space Weather Research
博士后奖学金:OPP-PRF:研究与亚暴爆发相关的极地地磁特征,以解决南半球空间天气研究中的数据差距
  • 批准号:
    2317994
  • 财政年份:
    2023
  • 资助金额:
    $ 74.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Using a weather model and geologic data to test tectonic mechanisms in an intercontinental setting: The Altai Mountains of Central Asia
合作研究:利用天气模型和地质数据测试洲际环境中的构造机制:中亚阿尔泰山脉
  • 批准号:
    2316735
  • 财政年份:
    2023
  • 资助金额:
    $ 74.83万
  • 项目类别:
    Standard Grant
Collaborative Research: The Automatic Weather Station Program: Antarctic Meteorological Sentinel Service 2024-2027
合作研究:自动气象站计划:南极气象哨兵服务2024-2027
  • 批准号:
    2301362
  • 财政年份:
    2023
  • 资助金额:
    $ 74.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Using a weather model and geologic data to test tectonic mechanisms in an intercontinental setting: The Altai Mountains of Central Asia
合作研究:利用天气模型和地质数据测试洲际环境中的构造机制:中亚阿尔泰山脉
  • 批准号:
    2316736
  • 财政年份:
    2023
  • 资助金额:
    $ 74.83万
  • 项目类别:
    Standard Grant
Collaborative Research: The Automatic Weather Station Program: Antarctic Meteorological Sentinel Service 2024-2027
合作研究:自动气象站计划:南极气象哨兵服务2024-2027
  • 批准号:
    2301363
  • 财政年份:
    2023
  • 资助金额:
    $ 74.83万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
  • 批准号:
    2320147
  • 财政年份:
    2023
  • 资助金额:
    $ 74.83万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了