CAREER: Flow, Failure, and Migration in Glassy Materials

职业:玻璃材料中的流动、失效和迁移

基本信息

  • 批准号:
    1352184
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

Technical Summary:This CAREER award supports theoretical and computational research and education to investigate how disordered materials and biological tissues flow and fail. Understanding these flows is of immediate practical importance. For example, bulk metallic glasses show great promise as structural materials but have not been widely adopted because they fail via poorly understood localized shear bands. Similarly, rates of cell migration help govern embryogenesis and cancer tumorigenesis, yet it is unclear how these rates are influenced by single cell mechanical properties. Although non-biological disordered and glassy solids flow when forces are applied at a boundary, and biological tissues flow when individual cells apply forces to their neighbors, there is a surprising universality in the way that these "materials" flow and deform. The PI will use tools from statistical and soft matter physics to exploit this universality and make verifiable predictions about flow, failure, and cell migration. To achieve this goal, the PI will focus on three approaches: (1) Exploit a new universality class of random matrix ensembles to make first-principles predictions about the vibrational modes and localized defects that govern plasticity in jammed solids. (2) Identify flow defects, or soft spots, in disordered solids and test the assumptions made by three well-known continuum models for plastic flow. This will determine which model, if any, correctly describes the defects. This will allow testing the behavior of defects under shear reversal, their statistics as a function of the degree of structural disorder, and their evolution inside the shear bands leading to catastrophic failure. The continuum model will then be parameterized using only microscopic information from simulations. (3) Develop a new theory that makes predictions for the rates of cell migration in confluent tissues, addressing how packing topology, boundaries between two tissue types, and abnormal cell mechanics affect migration rates; predictions will be directly tested in experiments.This research will be integrated with several education initiatives that focus on students in the last years of high school and the first years of college. Specifically, the PI will partner with a high school program to develop and deploy modules in high schools that (a) "tune-up" the math skills of marginal students, and (b) connect introductory physics concepts to research at the frontier of materials science. At the introductory college level, the PI will (c) work with an economics education professor to implement a weekly self-assessment for students to help them internalize class expectations and social norms, and (d) collaborate with physics education and science teaching professors to improve training for graduate assistants in a newly developed "Teaching Fellows" program. The PI will also (e) use online and classroom technologies to develop social networking and discussion platforms that help students build a sense of community.Nontechnical Summary: This CAREER award supports theoretical research and education with the aim of understanding how disordered solids deform and fail. Making predictions about these materials is challenging because they respond like a solid when a small force is applied, and yet the atoms, particles, or cells that comprise them are arranged like those in a liquid. When larger forces are applied, these materials exhibit interesting flow patterns that are important in both nature and industry. For example, bulk metallic glasses show great promise as structural materials but have not been widely adopted because they fail via poorly understood localized shear bands. Recently, researchers have also discovered that biological tissues behave like a disordered solid, and therefore cell migration in embryonic development and cancer metastasis can also be thought of as flow within these "materials". The goal of the proposed work is to develop predictive, verifiable theories for flow in disordered solids. To achieve this goal, the PI proposes to analyze the dynamics of the defects that govern flow, and characterize their properties. Although identifying a "defect" in these solids is non-trivial because the systems are disordered, the PI has developed several tools based on ideas from statistical and soft matter physics to do so. Armed with these new techniques, the PI aims to answer questions such as: how do defects self-organize to cause catastrophic failure? How many defects should one expect in a given material? Is it possible for a mechanically abnormal cell, such as a cancer cell, to act as a defect inside a biological tissue and thereby migrate more quickly?A second part of the proposal aims to increase retention in Science, Technology, Engineering and Math (STEM) disciplines. It focuses on students in the last years of high school and the first years of college, because many students leave the science fields during this time period. The PI will partner with a high school program in Syracuse, NY to deploy teaching modules, made freely available online, that connect introductory physics concepts to research at the frontier of materials science, highlighting their relevance in the real world. Additional modules will "tune-up" the math skills of marginal students, giving them a chance to succeed in physics classes. The PI will also implement several initiatives in an introductory college course, including a weekly self-assessment, training and fellowships for graduate teaching assistants, and online and social networking technologies to help students build a sense of community.
技术摘要:该职业奖支持理论和计算研究及教育,以研究无序材料和生物组织如何流动和失效。 了解这些流动具有直接的实际意义。例如,大块金属玻璃作为结构材料显示出巨大的前景,但尚未得到广泛采用,因为它们会因人们对局部剪切带知之甚少而失效。同样,细胞迁移速率有助于控制胚胎发生和癌症肿瘤发生,但尚不清楚单细胞机械特性如何影响这些速率。 尽管当在边界施加力时非生物无序和玻璃状固体会流动,并且当单个细胞向其邻居施加力时生物组织会流动,但这些“材料”流动和变形的方式存在令人惊讶的普遍性。 PI 将使用统计和软物质物理学的工具来利用这种普遍性,并对流动、失效和细胞迁移做出可验证的预测。 为了实现这一目标,PI 将重点关注三种方法:(1)利用随机矩阵系综的新通用类,对控制堵塞固体塑性的振动模式和局部缺陷进行第一性原理预测。 (2) 识别无序固体中的流动缺陷或软点,并测试三个著名的塑性流动连续介质模型所做的假设。这将确定哪个模型(如果有)正确描述了缺陷。这将允许测试缺陷在剪切反转下的行为、它们作为结构紊乱程度函数的统计数据,以及它们在剪切带内导致灾难性失效的演变。然后,仅使用模拟中的微观信息对连续体模型进行参数化。 (3) 发展一种新理论,预测汇合组织中的细胞迁移率,解决堆积拓扑、两种组织类型之间的边界以及异常细胞力学如何影响迁移率;预测将直接在实验中进行检验。这项研究将与几项针对高中最后几年和大学第一年学生的教育计划相结合。具体来说,PI 将与高中项目合作,在高中开发和部署模块,以 (a) “调整”边缘学生的数学技能,以及 (b) 将入门物理概念与材料科学前沿的研究联系起来。在大学入门级,PI将(c)与经济学教育教授合作,对学生进行每周自我评估,以帮助他们内化课堂期望和社会规范,(d)与物理教育和科学教学教授合作,在新开发的“助教”计划中改进对研究生助理的培训。 PI 还将 (e) 使用在线和课堂技术开发社交网络和讨论平台,帮助学生建立社区意识。非技术摘要:该职业奖支持理论研究和教育,旨在了解无序固体如何变形和失效。 对这些材料进行预测具有挑战性,因为当施加很小的力时,它们会像固体一样做出反应,而组成它们的原子、粒子或细胞的排列却像液体中的一样。当施加较大的力时,这些材料会表现出有趣的流动模式,这在自然和工业中都很重要。 例如,大块金属玻璃作为结构材料显示出巨大的前景,但尚未得到广泛采用,因为它们会因人们对局部剪切带知之甚少而失效。 最近,研究人员还发现生物组织的行为就像无序的固体,因此胚胎发育和癌症转移中的细胞迁移也可以被认为是在这些“材料”内流动。拟议工作的目标是开发无序固体流动的预测性、可验证的理论。 为了实现这一目标,PI 建议分析控制流动的缺陷的动态,并表征其属性。 尽管识别这些固体中的“缺陷”并非易事,因为系统是无序的,但 PI 已经根据统计和软物质物理学的思想开发了多种工具来实现这一点。 借助这些新技术,PI 旨在回答以下问题:缺陷如何自组织导致灾难性故障?给定材料中应该预期有多少缺陷? 机械异常细胞(例如癌细胞)是否有可能充当生物组织内的缺陷,从而更快地迁移?该提案的第二部分旨在提高科学、技术、工程和数学 (STEM) 学科的保留率。 它主要针对高中最后几年和大学第一年的学生,因为许多学生在这段时间离开科学领域。 该 PI 将与纽约州锡拉丘兹的一个高中项目合作,部署在线免费提供的教学模块,将介绍性物理概念与材料科学前沿的研究联系起来,强调它们在现实世界中的相关性。额外的模块将“调整”边缘学生的数学技能,让他们有机会在物理课上取得成功。 PI 还将在大学入门课程中实施多项举措,包括每周自我评估、研究生助教培训和奖学金,以及帮助学生建立社区意识的在线和社交网络技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mary Lisa Manning其他文献

Mary Lisa Manning的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mary Lisa Manning', 18)}}的其他基金

3D Mechanical Modeling of Epithelial Stratification and Turnover
上皮分层和更新的 3D 机械建模
  • 批准号:
    2230841
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Conference: Convergence Accelerator Workshop: Bio-inspired Design
会议:融合加速器研讨会:仿生设计
  • 批准号:
    2232327
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Predicting Dynamics in Unstable and Active Solids
预测不稳定和活性固体中的动力学
  • 批准号:
    1951921
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Conference support for the 2019 Soft Condensed Matter GRC: Living and Non-living Matter on the Edge
2019 年软凝聚态 GRC 会议支持:边缘的生命和非生命物质
  • 批准号:
    1930698
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Predicting How Fluid-Solid Transitions in Cancer Tumors Help Govern Invasion and Metastasis
预测癌症肿瘤中的液固转变如何帮助控制侵袭和转移
  • 批准号:
    1607416
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似国自然基金

肝硬化患者4D Flow MRI血流动力学与肝脂肪和铁代谢的交互机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于4D Flow MRI 技术联合HA/cRGD-GD-LPs对比剂增强扫描诊断肝纤维化分期的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于4 D-Flow MRI评估吻合口大小对动静脉瘘的血流动力学以及临床预后的影响
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
构建4D-Flow-CFD仿真模型定量评估肝硬化门静脉血流动力学
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于4D-FLOW MRI实现特发性颅内压增高患者静脉窦无创测压和血流动力学分析
  • 批准号:
    82301457
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
结合4D flow的多模态心脏磁共振成像在肥厚型心肌病中的应用研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
驻高海拔地区铁路建设工程项目员工的Flow体验、国家认同与心理韧性:积极环境心理学视角
  • 批准号:
    72271205
  • 批准年份:
    2022
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
基于Flow-through流场的双离子嵌入型电容去离子及其动力学调控研究
  • 批准号:
    52009057
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
主动脉瓣介导的血流模式致升主动脉重构的4D Flow MRI可视化预测模型研究
  • 批准号:
    82071991
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
基于4D Flow MRI探讨侧支循环影响颈内动脉重塑的机制研究
  • 批准号:
    81801139
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mechanisms of Impaired Skeletal Muscle Blood Flow and Exercise Intolerance in Veterans with Heart Failure with Preserved Ejection Fraction: Efficacy of Knee Extensor Training
射血分数保留的心力衰竭退伍军人骨骼肌血流受损和运动不耐受的机制:膝关节伸肌训练的功效
  • 批准号:
    10413604
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Mechanisms of Impaired Skeletal Muscle Blood Flow and Exercise Intolerance in Veterans with Heart Failure with Preserved Ejection Fraction: Efficacy of Knee Extensor Training
射血分数保留的心力衰竭退伍军人骨骼肌血流受损和运动不耐受的机制:膝关节伸肌训练的功效
  • 批准号:
    10597119
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Development and application of a slope failure and sediment flow simulator based on mixture and critical state theories
基于混合理论和临界状态理论的边坡破坏与泥沙流模拟器的开发与应用
  • 批准号:
    22H01734
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
High-Flow Nasal Oxygen with or without Helmet Non-invasive Ventilation for Oxygenation Support in Acute Respiratory Failure (HONOUR) Pilot RCT
带或不带头盔的高流量鼻氧无创通气用于急性呼吸衰竭的氧合支持 (HONOUR) 试点随机对照试验
  • 批准号:
    434710
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Operating Grants
Development of a method for examining of arterial compliance based on estimation method for flow rate and pressure head of ventricular assist device for quantitative assessment of heart failure risk
开发基于心室辅助装置流量和压头估计方法的动脉顺应性检查方法,定量评估心力衰竭风险
  • 批准号:
    20K22508
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Slope-failure mechanisms, catastrophic mass flow processes and public perception of risk in British Columbia and Southern Patagonia.
不列颠哥伦比亚省和南巴塔哥尼亚的斜坡失稳机制、灾难性质量流过程以及公众对风险的认知。
  • 批准号:
    NE/T014210/1
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Abdominal organ blood flow and intestinal bacterial flora in heart failure
心力衰竭时腹部器官血流量和肠道菌群
  • 批准号:
    20K07828
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Predicting therapeutic efficacy and liver failure of molecular targeted therapy for hepatocellular carcinoma using CT with blood flow and tissue analysis.
使用 CT 结合血流和组织分析来预测肝细胞癌分子靶向治疗的治疗效果和肝功能衰竭。
  • 批准号:
    19K08199
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Field and laboratory investigations on liquefaction-induced flow-failure mechanism in gentle sloped ground
缓坡地基液化诱发流动失效机理的现场和室内研究
  • 批准号:
    19KK0108
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Impact of Low Flow Nocturnal Oxygen Therapy On Hospital Admissions and Mortality in Patients with Heart Failure and Central Sleep Apnea - DCC
低流量夜间氧疗对心力衰竭和中枢性睡眠呼吸暂停患者入院和死亡率的影响 - DCC
  • 批准号:
    10005453
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了