EAGER: Image and Video Forensics: Detecting Image Manipulation by Content Analysis

EAGER:图像和视频取证:通过内容分析检测图像操纵

基本信息

  • 批准号:
    1353155
  • 负责人:
  • 金额:
    $ 19.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-10-01 至 2015-09-30
  • 项目状态:
    已结题

项目摘要

The advent of sophisticated photo editing software has made it increasingly easier to manipulate digital images. Often visual inspection cannot definitively distinguish the resulting forgeries from authentic photographs. In response, forensic techniques have emerged to detect geometric or statistical inconsistencies that result from specific forms of photo manipulation. The PI aspires to develop new forensic methods based on geometric content analysis, which focus on finding inconsistencies in the geometric relationships among objects depicted in a photograph. The geometric relationships in a 2D image correspond to the projection of the relations that exist in the 3D scene; if a scene is known to contain a given relationship but the projected relation does not hold in the photograph, then one may conclude that the photograph is not a true projective image of the scene. With this in mind, the PI's goal in this exploratory project is to build a set of testable constraints that must be satisfied in real images, so that an unsatisfied constraint constitutes definitive, objective evidence of image manipulation. Fundamental challenges of this work include: developing tools for analysis from incomplete lighting information, building testable models of skin reflectance, accounting for structured uncertainty in feature comparison, and establishing method guidelines for forensic image analysis.Broader Impacts: This project will create tools for objectively detecting image manipulation, which will help reporters, law enforcement, scientists, and others differentiate between legitimate photographs and forged images. The products of this research will be communicated via academic publications and online source code. Collaborations with industrial partners will allow the research to have practical impact as well.
复杂的照片编辑软件的出现使处理数字图像变得越来越容易。通常,肉眼检查不能明确地区分由此产生的伪造照片和真实照片。作为回应,法医技术应运而生,以检测特定形式的照片处理导致的几何或统计不一致。PI渴望开发基于几何内容分析的新法医方法,专注于找出照片中描绘的对象之间几何关系的不一致之处。2D图像中的几何关系对应于3D场景中存在的关系的投影;如果已知场景包含给定关系,但投影关系在照片中不成立,则可以得出结论,该照片不是场景的真实投影图像。考虑到这一点,PI在这个探索性项目中的目标是建立一组必须在真实图像中满足的可测试约束,以便未满足的约束构成图像操纵的明确、客观的证据。这项工作的基本挑战包括:开发从不完整的照明信息中分析的工具,建立可测试的皮肤反射率模型,考虑特征比较中的结构性不确定性,以及建立法医图像分析的方法指南。广泛的影响:该项目将创建客观检测图像篡改的工具,这将帮助记者、执法部门、科学家和其他人区分合法照片和伪造图像。这项研究的成果将通过学术出版物和在线源代码进行交流。与行业合作伙伴的合作也将使这项研究产生实际影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James O'Brien其他文献

Adaptive RAS/SPS System Settings for Improving Grid Reliability and Asset Utilization through Predictive Simulation and Controls
自适应 RAS/SPS 系统设置,通过预测仿真和控制提高电网可靠性和资产利用率
  • DOI:
    10.2172/1580707
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James O'Brien;Emily L. Barrett;Xiaoyuan Fan;R. Diao;Renke Huang;Qiuhua Huang
  • 通讯作者:
    Qiuhua Huang
Low dose interleukin 2 expands plasmablasts with a regulatory b cell phenotype post-MI
  • DOI:
    10.1016/j.atherosclerosis.2024.118287
  • 发表时间:
    2024-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    James O'Brien;Ayden Case;Rochelle Sriranjan;Zewen Kelvin Tuong;Joseph Cheriyan;Menna Clatworthy;Ziad Mallat;Tian Zhao
  • 通讯作者:
    Tian Zhao
TSTL: the template scripting testing language
TSTL:模板脚本测试语言
9. Reliability of magnetic resonance imaging (MRI) in measuring response to neoadjuvant chemotherapy in breast cancer patients and its therapeutic implications
  • DOI:
    10.1016/j.ejso.2015.08.040
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    James O'Brien;Shaukat Mirza
  • 通讯作者:
    Shaukat Mirza
Prevalence of undiagnosed stage B heart failure among emergency department patients
  • DOI:
    10.1016/j.ajem.2024.09.026
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Gottlieb;Evelyn Schraft;James O'Brien;Daven Patel;Gary D. Peksa
  • 通讯作者:
    Gary D. Peksa

James O'Brien的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James O'Brien', 18)}}的其他基金

Collaborative Research: Spectroscopic Studies of Metal-Containing Diatomics and Field Shift Effects
合作研究:含金属双原子的光谱研究和场移效应
  • 批准号:
    1955773
  • 财政年份:
    2020
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Standard Grant
Collaborative Proposal: High Resolution Spectroscopic Studies of Ionic Metal-Ligand Bonds
合作提案:离子金属-配体键的高分辨率光谱研究
  • 批准号:
    1566442
  • 财政年份:
    2016
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Standard Grant
EAGER: Collaborative: Understanding How Manipulated Images Influence People
EAGER:协作:了解经过处理的图像如何影响人们
  • 批准号:
    1444840
  • 财政年份:
    2014
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: High Resolution Absorption and Emission Spectroscopy of Diatomic Metal Halides, Nitrides and Dimers
合作研究:双原子金属卤化物、氮化物和二聚体的高分辨率吸收和发射光谱
  • 批准号:
    1112354
  • 财政年份:
    2011
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Standard Grant
HCC: Small: Simulating and Animating Materials with Dynamic Geometry
HCC:小:使用动态几何对材料进行模拟和动画制作
  • 批准号:
    0915462
  • 财政年份:
    2009
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Spectroscopy of Pd and Pt Catalytic Mimetics
合作提案:Pd 和 Pt 催化模拟物的光谱学
  • 批准号:
    0612927
  • 财政年份:
    2006
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Standard Grant
RUI: Collaborative Proposal: Visible and Near-Infrared Electronic Spectroscopy of Metal-Containing Diatomic Radicals by Intracavity Laser Absorption Techniques
RUI:合作提案:通过腔内激光吸收技术对含金属双原子自由基进行可见光和近红外电子光谱分析
  • 批准号:
    0213356
  • 财政年份:
    2002
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Continuing Grant
Undergraduate Fiber Optics and Communications for Engineering Technology
工程技术本科光纤与通信
  • 批准号:
    9554725
  • 财政年份:
    1996
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Standard Grant
Prediction of Multicomponent Adsorption Equilibrium in Industrial Microporous Adsorbents
工业微孔吸附剂中多组分吸附平衡的预测
  • 批准号:
    9215604
  • 财政年份:
    1993
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Continuing Grant
Modern Atomic Absorption Spectroscopy for Undergraduate Analytical Chemistry
现代原子吸收光谱学本科分析化学
  • 批准号:
    9151956
  • 财政年份:
    1991
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Standard Grant

相似国自然基金

基于CE-3及IMAGE卫星地球等离子体层EUV探测数据的反演研究
  • 批准号:
    41904148
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
Raw-Image微小物体高精度位姿测量法
  • 批准号:
    61105029
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Video-Based Fall Detection and Medical Image Denoising Methods
基于视频的跌倒检测和医学图像去噪方法
  • 批准号:
    2767749
  • 财政年份:
    2023
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Studentship
Web-Scale Semantic Image and Video Understanding
网络规模的语义图像和视频理解
  • 批准号:
    RGPIN-2018-04657
  • 财政年份:
    2022
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Discovery Grants Program - Individual
Human Visual Properties based Image/Video Compression Research
基于人类视觉特性的图像/视频压缩研究
  • 批准号:
    22K17921
  • 财政年份:
    2022
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Image and Video Signal Processing with Applications
图像和视频信号处理及其应用
  • 批准号:
    RGPIN-2022-04980
  • 财政年份:
    2022
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Discovery Grants Program - Individual
Image and Video Compression Meets Computer Vision
图像和视频压缩与计算机视觉的结合
  • 批准号:
    RGPIN-2020-04525
  • 财政年份:
    2022
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Discovery Grants Program - Individual
An Innovative Video Production Application Featuring Image Recognition, Sentiment Analysis and Real-time Guidance Supporting Users in Making Professional Video While Saving Time and Money
一款创新的视频制作应用程序,具有图像识别、情感分析和实时指导功能,支持用户制作专业视频,同时节省时间和金钱
  • 批准号:
    10004472
  • 财政年份:
    2021
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Collaborative R&D
High-speed video image analyses on actions of sand particles in a water jet obliquely impinging against a solid surface
高速视频图像分析水射流中的沙粒倾斜撞击固体表面的行为
  • 批准号:
    21H01443
  • 财政年份:
    2021
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Image and Video Compression Meets Computer Vision
图像和视频压缩与计算机视觉的结合
  • 批准号:
    RGPIN-2020-04525
  • 财政年份:
    2021
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Discovery Grants Program - Individual
Web-Scale Semantic Image and Video Understanding
网络规模的语义图像和视频理解
  • 批准号:
    RGPIN-2018-04657
  • 财政年份:
    2021
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Discovery Grants Program - Individual
Image/video restoration in ill lighting conditions
光照条件不佳时的图像/视频恢复
  • 批准号:
    517550-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 19.27万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了