Mechanisms of osmosensing and osmotic stress responses in tilapia

罗非鱼渗透感应和渗透应激反应的机制

基本信息

  • 批准号:
    1355098
  • 负责人:
  • 金额:
    $ 65.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-15 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

Remarkable progress has been made in understanding the effector mechanisms of osmoregulation in fishes and many other animals. In contrast, less is known about the mechanisms by which these effectors are regulated, how osmotic changes in the environment are perceived, and how osmosensory information is transduced via intracellular signaling pathways to the osmoregulatory effectors. By approaching these questions starting from a robust and tractable osmoregulatory effector system to identify its regulatory elements, the project addresses a large gap in the current knowledge about fish osmoregulation/ fluid and electrolyte homeostasis. Tilapia (Oreochromis mossambicus) represent a superb model for studying mechanisms of osmosensing and osmotic stress signaling because they tolerate an extremely wide range of environmental salinity. Their genome has been sequenced and proteome well-annotated. The research supported by this award will investigate the mechanisms and implications associated with hyperosmotic induction of the myo-inositol biosynthesis pathway. This research project has broad implications for biology because myo-inositol and phosphoinosite signaling as well as osmotic stress responses are common to all eukaryotes. It has basic implications for agricultural development because studying mechanisms and implications associated with activation of compatible osmolyte synthesis pathways could lead to increasing salt and drought tolerance. Understanding the role of myo-inositol in the regulation of key intracellular signaling pathways and energy homeostasis is also significant in the light of stress-related disorders. The PIs lab has generated significant resources in the past to advance the study of osmosensory and osmoregulatory mechanisms in tilapia, including quantitative proteomics workflows and several highly osmotolerant cell lines. Preliminary data show that both enzymes involved in this pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPase 1), as well as myo-inositol levels are extremely highly upregulated during hyperosmotic stress in multiple tilapia tissues and cell lines. Thus, this pathway represents a robust system for the proposed studies. The project aims to identify osmoresponsive cis elements in the MIPS and IMPase1 genes and test the hypothesis that such elements are necessary for hyperosmotic induction of the myo-inositol biosynthesis pathway. Moreover, the hypothesis that MIPS and IMPase1 influence cellular osmoregulation beyond myo-inositol being a compatible osmolyte will be tested. Specifically, it is proposed that MIPS and IMPase 1 directly interact with other proteins involved in osmoprotection and that their regulation indirectly affects cellular phosphoinosite signaling (PI3K/ PTEN/Akt and PLC/PKC/IP3 pathways) and energy metabolism (by sequestering glucose-6-phosphate). The project uses sophisticated proteomics tools and workflows to capture molecular phenotypes associated with osmotic stress signaling in an unprecedented fashion. This unique combination of resources will significantly enhance our understanding of osmotic stress signaling mechanisms and provide novel insight into evolutionary driving forces that have shaped myo-inositol as a key metabolite in most organisms. Dissemination of activities and results of this project will be done via peer-reviewed publications, conference presentations, seminars, and broader outreach avenues, including engagement of K12 students and educators, aquaculture producers, community groups, and conservation organizations in research. A public lab website will be developed to showcase research and outreach activities. Two graduate students will be trained and each of them will supervise an undergraduate intern. Priority will be given to recruit students from underrepresented minorities.
在了解鱼类和许多其他动物的渗透调节效应机制方面已经取得了显着进展。相比之下,人们对这些效应器的调节机制、如何感知环境中的渗透压变化以及如何通过细胞内信号通路将渗透感应信息转导至渗透调节效应器知之甚少。通过从强大且易于处理的渗透调节效应器系统开始解决这些问题,以确定其调节元件,该项目解决了当前有关鱼类渗透调节/液体和电解质稳态知识中的巨大差距。 罗非鱼(Oreochromis mossambicus)是研究渗透传感和渗透应激信号传导机制的绝佳模型,因为它们能耐受极宽范围的环境盐度。它们的基因组已被测序,蛋白质组已得到很好的注释。 该奖项支持的研究将调查与肌醇生物合成途径高渗诱导相关的机制和影响。 该研究项目对生物学具有广泛的影响,因为肌醇和磷酸肌醇信号传导以及渗透应激反应对所有真核生物来说都是常见的。它对农业发展具有基本意义,因为研究与相容渗透剂合成途径激活相关的机制和影响可能会导致提高耐盐性和耐旱性。鉴于应激相关疾病,了解肌醇在关键细胞内信号通路和能量稳态调节中的作用也具有重要意义。 PI 实验室过去已经产生了大量资源来推进罗非鱼渗透感应和渗透调节机制的研究,包括定量蛋白质组学工作流程和几种高渗透压耐受细胞系。初步数据表明,在多种罗非鱼组织和细胞系的高渗应激过程中,参与该途径的两种酶,肌醇磷酸合酶(MIPS)和肌醇单磷酸酶1(IMPase 1),以及肌醇水平都极度上调。因此,该途径代表了拟议研究的强大系统。该项目旨在鉴定 MIPS 和 IMPase1 基因中的渗透响应顺式元件,并检验这些元件对于肌醇生物合成途径的高渗诱导所必需的假设。此外,MIPS 和 IMPase1 除了肌醇作为相容渗透剂之外还影响细胞渗透压调节的假设也将得到测试。具体来说,有人提出 MIPS 和 IMPase 1 直接与参与渗透保护的其他蛋白质相互作用,并且它们的调节间接影响细胞磷酸肌醇信号传导(PI3K/PTEN/Akt 和 PLC/PKC/IP3 途径)和能量代谢(通过隔离葡萄糖-6-磷酸)。该项目使用复杂的蛋白质组学工具和工作流程以前所未有的方式捕获与渗透应激信号相关的分子表型。 这种独特的资源组合将显着增强我们对渗透应激信号机制的理解,并为使肌醇成为大多数生物体中关键代谢物的进化驱动力提供新的见解。该项目的活动和结果将通过同行评审的出版物、会议演示、研讨会和更广泛的外展途径进行传播,包括让 K12 学生和教育工作者、水产养殖生产者、社区团体和保护组织参与研究。 将开发一个公共实验室网站来展示研究和外展活动。 将培训两名研究生,每人将指导一名本科生实习生。 将优先招收代表性不足的少数族裔的学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dietmar Kültz其他文献

Nonlinear effects of environmental salinity on the gill transcriptome versus proteome of <em>Oreochromis niloticus</em> modulate epithelial cell turnover
  • DOI:
    10.1016/j.ygeno.2021.07.016
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Larken Root;Aurora Campo;Leah MacNiven;Pazit Con;Avner Cnaani;Dietmar Kültz
  • 通讯作者:
    Dietmar Kültz
Potential physiological mechanisms behind variation in rainbow trout (Oncorhynchus mykiss) to biosynthesize EPA and DHA when reared on plant oil replacement feeds
虹鳟鱼(Oncorhynchus mykiss)在以植物油替代饲料饲养时生物合成 EPA 和 DHA 变化背后的潜在生理机制
  • DOI:
    10.1016/j.aqrep.2025.102655
  • 发表时间:
    2025-04-15
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Ken Overturf;Jason Abernathy;Dietmar Kültz;Jacob Bledsoe;Shawn Narum;Thomas Welker
  • 通讯作者:
    Thomas Welker
Cellular osmoregulation: beyond ion transport and cell volume.
  • DOI:
    10.1078/0944-2006-00025
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Dietmar Kültz
  • 通讯作者:
    Dietmar Kültz
Osmotic and thermal effects on in situ ATPase activity in permeabilized gill epithelial cells of the fish Gillichthys mirabilis
渗透和热效应对奇异鱼透化鳃上皮细胞原位 ATP 酶活性的影响

Dietmar Kültz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dietmar Kültz', 18)}}的其他基金

NSF-BSF: Control of molecular, cellular, and organismal phenotypes by the transcription factor NFAT5
NSF-BSF:转录因子 NFAT5 对分子、细胞和有机体表型的控制
  • 批准号:
    2209383
  • 财政年份:
    2022
  • 资助金额:
    $ 65.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: Somatic cell adaptation towards immortalization in a marine tunicate
合作研究:NSF-BSF:海洋被囊动物体细胞对永生的适应
  • 批准号:
    2127516
  • 财政年份:
    2021
  • 资助金额:
    $ 65.89万
  • 项目类别:
    Continuing Grant
NSF-IOS-BSF: Biochemical and genetic basis of salinity tolerance in tilapia
NSF-IOS-BSF:罗非鱼耐盐性的生化和遗传基础
  • 批准号:
    1656371
  • 财政年份:
    2017
  • 资助金额:
    $ 65.89万
  • 项目类别:
    Continuing Grant
Osmosensory Signal Transduction in Euryhaline Tilapia
广盐罗非鱼的渗透感应信号转导
  • 批准号:
    1049780
  • 财政年份:
    2011
  • 资助金额:
    $ 65.89万
  • 项目类别:
    Continuing Grant
Workshop: Integrative organismal biology of adaptive processes, September 19-20, 2011, Arlington, VA
研讨会:适应过程的综合有机生物学,2011 年 9 月 19-20 日,弗吉尼亚州阿灵顿
  • 批准号:
    1145241
  • 财政年份:
    2011
  • 资助金额:
    $ 65.89万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: Behavioral Compensation for Limits to Ecophysiological Plasticity in Dynamic Environments
论文研究:动态环境中生态生理可塑性限制的行为补偿
  • 批准号:
    0709556
  • 财政年份:
    2007
  • 资助金额:
    $ 65.89万
  • 项目类别:
    Standard Grant
Osmosensory signal transduction in gill cells of euryhaline tilapia
广盐罗非鱼鳃细胞的渗透感应信号转导
  • 批准号:
    0542755
  • 财政年份:
    2006
  • 资助金额:
    $ 65.89万
  • 项目类别:
    Continuing Grant
Role of Protein Phosphorylation for Osmotic Stress Adaptation of a Euryhaline Teleost
蛋白质磷酸化对广盐硬骨鱼渗透胁迫适应的作用
  • 批准号:
    0244569
  • 财政年份:
    2002
  • 资助金额:
    $ 65.89万
  • 项目类别:
    Continuing Grant
Role of Protein Phosphorylation for Osmotic Stress Adaptation of a Euryhaline Teleost
蛋白质磷酸化对广盐硬骨鱼渗透胁迫适应的作用
  • 批准号:
    0114485
  • 财政年份:
    2001
  • 资助金额:
    $ 65.89万
  • 项目类别:
    Continuing Grant

相似海外基金

Cytoskeletal regulation of vasopressin neuron activity in health and salt-dependent hypertension.
健康和盐依赖性高血压中加压素神经元活性的细胞骨架调节。
  • 批准号:
    488818
  • 财政年份:
    2023
  • 资助金额:
    $ 65.89万
  • 项目类别:
    Operating Grants
Cytoskeletal regulation of vasopressin neuron activity in health and salt-dependent hypertension.
健康和盐依赖性高血压中加压素神经元活性的细胞骨架调节。
  • 批准号:
    477284
  • 财政年份:
    2022
  • 资助金额:
    $ 65.89万
  • 项目类别:
    Operating Grants
Roles of molecular interactions in the control of cellular hydration by bacterial osmosensing transporter ProP
分子相互作用在细菌渗透传感转运蛋白 ProP 控制细胞水合中的作用
  • 批准号:
    RGPIN-2017-05160
  • 财政年份:
    2022
  • 资助金额:
    $ 65.89万
  • 项目类别:
    Discovery Grants Program - Individual
Identification of novel osmosensing receptors in C. elegans
秀丽隐杆线虫中新型渗透感应受体的鉴定
  • 批准号:
    10188127
  • 财政年份:
    2021
  • 资助金额:
    $ 65.89万
  • 项目类别:
Roles of molecular interactions in the control of cellular hydration by bacterial osmosensing transporter ProP
分子相互作用在细菌渗透传感转运蛋白 ProP 控制细胞水合中的作用
  • 批准号:
    RGPIN-2017-05160
  • 财政年份:
    2021
  • 资助金额:
    $ 65.89万
  • 项目类别:
    Discovery Grants Program - Individual
Identification of novel osmosensing receptors in C. elegans
秀丽隐杆线虫中新型渗透感应受体的鉴定
  • 批准号:
    10360684
  • 财政年份:
    2021
  • 资助金额:
    $ 65.89万
  • 项目类别:
Roles of molecular interactions in the control of cellular hydration by bacterial osmosensing transporter ProP
分子相互作用在细菌渗透传感转运蛋白 ProP 控制细胞水合中的作用
  • 批准号:
    RGPIN-2017-05160
  • 财政年份:
    2020
  • 资助金额:
    $ 65.89万
  • 项目类别:
    Discovery Grants Program - Individual
Roles of molecular interactions in the control of cellular hydration by bacterial osmosensing transporter ProP
分子相互作用在细菌渗透传感转运蛋白 ProP 控制细胞水合中的作用
  • 批准号:
    RGPIN-2017-05160
  • 财政年份:
    2019
  • 资助金额:
    $ 65.89万
  • 项目类别:
    Discovery Grants Program - Individual
Roles of molecular interactions in the control of cellular hydration by bacterial osmosensing transporter ProP
分子相互作用在细菌渗透传感转运蛋白 ProP 控制细胞水合中的作用
  • 批准号:
    RGPIN-2017-05160
  • 财政年份:
    2018
  • 资助金额:
    $ 65.89万
  • 项目类别:
    Discovery Grants Program - Individual
Roles of molecular interactions in the control of cellular hydration by bacterial osmosensing transporter ProP
分子相互作用在细菌渗透传感转运蛋白 ProP 控制细胞水合中的作用
  • 批准号:
    RGPIN-2017-05160
  • 财政年份:
    2017
  • 资助金额:
    $ 65.89万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了