ABI Innovation: A Probabilistic Approach to Meta-Analysis of Biological Network Interface
ABI Innovation:生物网络接口元分析的概率方法
基本信息
- 批准号:1355899
- 负责人:
- 金额:$ 68.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Genes do not work alone, but rather in an intricate network of interactions to regulate fundamental cellular processes. Biological network inference has become a key analysis tool in modern biology allowing scientists to gain a better understanding of basic biology such as evolution, molecular biology and genetics. Network inference algorithms have played significant roles in understanding gene networks from molecular data but are limited by the large search space of the network structure and data insufficient for statistical power. The goal of this project is to develop a computational framework, based on statistical and machine learning techniques, for effectively integrating multiple heterogeneous data sets to infer gene networks accurately. The developed methods will be applied to answer important biological questions, such as: How is a gene network reshaped in the evolutionary process of yeast species?, How do genes and proteins interact with one another underlying a certain biological trait?, and Which genes contain causative sequence variations that influence important biological traits?. This project is expected to dramatically increase the applicability of network learning algorithms in a wide variety of applications, especially those with smaller sample sizes. The implementation of the developed methods will be made publicly available, which can help many other biologists to study gene networks in their research problems. This project is interdisciplinary in nature and has significant emphasis on interdisciplinary education, through project courses and outreach activities. It will have a long-term effect of advancing the field of biology, by increasing the number of students in computer science inspired to solve biology problems.Network inference from high-throughput biological data has significantly contributed to advancing our knowledge of molecular biology, evolution and genetics. Its major drawback is that, due to the exponentially large search space of the network structure, the sample size provided by a single dataset is often not large enough to obtain valid inference results. However, simply appending datasets from different studies is unlikely to be successful, because in many cases they contain different variables and overly heterogeneous samples. The goal of this project is to develop an innovative probabilistic approach to integrate multiple heterogeneous datasets, by jointly modeling one or more networks represented by these datasets. This project addresses the problem of how to integrate datasets containing heterogeneous samples (Aim 1), different sets of variables (Aim 2) and fundamentally different types of measurements (Aim 3). The developed algorithms in each Aim is applied to the following problems: 1) learning a network model that can represents evolutionary rewiring of gene regulatory networks across Saccharomyces species; 2) learning a joint latent network model that can infer a very high-dimensional network underlying biofilm phenotypes in S. cerevisiae by combining datasets with different variables; and 3) identifying hubs in the gene network from many expression datasets, to guide quantitative trait loci studies in S. cerevisiae.
基因不是单独起作用的,而是在一个复杂的相互作用网络中调节基本的细胞过程。生物网络推理已成为现代生物学的重要分析工具,使科学家能够更好地了解进化、分子生物学和遗传学等基础生物学。网络推理算法在从分子数据理解基因网络方面发挥了重要作用,但受网络结构搜索空间大、数据统计能力不足的限制。该项目的目标是开发一个基于统计和机器学习技术的计算框架,用于有效集成多个异构数据集以准确推断基因网络。所开发的方法将应用于回答重要的生物学问题,例如:酵母物种进化过程中基因网络是如何重塑的?基因和蛋白质是如何在某种生物特性的基础上相互作用的?、哪些基因包含影响重要生物学性状的致病序列变异?该项目有望大大提高网络学习算法在各种应用中的适用性,特别是那些样本量较小的应用。开发的方法的实现将会公开,这将有助于许多其他生物学家在他们的研究问题中研究基因网络。这个项目本质上是跨学科的,通过项目课程和推广活动,非常强调跨学科的教育。它将对推动生物学领域的发展产生长期影响,因为它将增加计算机科学专业学生的数量,从而激发他们解决生物学问题。基于高通量生物学数据的网络推理极大地促进了我们对分子生物学、进化和遗传学的了解。它的主要缺点是,由于网络结构的搜索空间呈指数级增长,单个数据集提供的样本量往往不足以获得有效的推理结果。然而,简单地附加来自不同研究的数据集不太可能成功,因为在许多情况下,它们包含不同的变量和过于异质的样本。该项目的目标是通过联合建模由这些数据集表示的一个或多个网络,开发一种创新的概率方法来集成多个异构数据集。该项目解决了如何整合包含异构样本(目标1)、不同变量集(目标2)和根本不同类型的测量(目标3)的数据集的问题。在每个Aim中开发的算法应用于以下问题:1)学习一个网络模型,该模型可以表示跨酵母菌物种的基因调控网络的进化重新布线;2)结合不同变量的数据集,学习一个联合潜在网络模型,该模型可以推断酿酒葡萄球菌生物膜表型的高维网络;3)从多个表达数据集中识别基因网络中的枢纽,指导酿酒葡萄球菌数量性状位点的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Su-In Lee其他文献
Titanizing on the surface of iron metal foam
- DOI:
10.1016/j.tca.2014.02.008 - 发表时间:
2014-04-10 - 期刊:
- 影响因子:
- 作者:
Su-In Lee;Jung-Yeul Yun;Tae-Soo Lim;Byoung-Kee Kim;Young-Min Kong;Jei-Pil Wang;Dong-Won Lee - 通讯作者:
Dong-Won Lee
Deep profiling of gene expression across 18 human cancers
对 18 种人类癌症中基因表达的深度剖析
- DOI:
10.1038/s41551-024-01290-8 - 发表时间:
2024-12-17 - 期刊:
- 影响因子:26.600
- 作者:
Wei Qiu;Ayse B. Dincer;Joseph D. Janizek;Safiye Celik;Mikael J. Pittet;Kamila Naxerova;Su-In Lee - 通讯作者:
Su-In Lee
Algorithms to estimate Shapley value feature attributions
用于估计夏普利值特征归因的算法
- DOI:
10.1038/s42256-023-00657-x - 发表时间:
2023-05-22 - 期刊:
- 影响因子:23.900
- 作者:
Hugh Chen;Ian C. Covert;Scott M. Lundberg;Su-In Lee - 通讯作者:
Su-In Lee
Su-In Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Su-In Lee', 18)}}的其他基金
Collaborative Research: ABI Innovation: Interpretable Machine Learning to Identify Molecular Markers for Complex Phenotypes
合作研究:ABI 创新:可解释的机器学习来识别复杂表型的分子标记
- 批准号:
1759487 - 财政年份:2018
- 资助金额:
$ 68.97万 - 项目类别:
Continuing Grant
CAREER: Learning the Chromatin Network from ChIP-Seq Data
职业:从 ChIP-Seq 数据学习染色质网络
- 批准号:
1552309 - 财政年份:2016
- 资助金额:
$ 68.97万 - 项目类别:
Continuing Grant
相似海外基金
NSF Engines Development Award: Building an sustainable plastics innovation ecosystem in the Midwest (MN, IL)
NSF 引擎发展奖:在中西部(明尼苏达州、伊利诺伊州)建立可持续塑料创新生态系统
- 批准号:
2315247 - 财政年份:2024
- 资助金额:
$ 68.97万 - 项目类别:
Cooperative Agreement
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
- 批准号:
2348836 - 财政年份:2024
- 资助金额:
$ 68.97万 - 项目类别:
Standard Grant
Footwear Innovation to Improve Safety for Female Turf Sport Players (“FemFITS”)
鞋类创新可提高女性草地运动运动员的安全性 (“FemFITS”)
- 批准号:
10098494 - 财政年份:2024
- 资助金额:
$ 68.97万 - 项目类别:
Collaborative R&D
Yorkshire and the Humber Policy Innovation Partnership
约克郡和汉伯政策创新伙伴关系
- 批准号:
ES/Z50239X/1 - 财政年份:2024
- 资助金额:
$ 68.97万 - 项目类别:
Research Grant
RII Track-4:NSF: Automated Design and Innovation of Chemical Production Processes with Intelligent Computing
RII Track-4:NSF:利用智能计算进行化学品生产过程的自动化设计和创新
- 批准号:
2327303 - 财政年份:2024
- 资助金额:
$ 68.97万 - 项目类别:
Standard Grant
Industrial Biotechnology Innovation Cluster
产业生物技术创新集群
- 批准号:
EP/Y024168/1 - 财政年份:2024
- 资助金额:
$ 68.97万 - 项目类别:
Research Grant
AI for Productive Research & Innovation in eLectronics (APRIL) Hub
人工智能促进高效研究
- 批准号:
EP/Y029763/1 - 财政年份:2024
- 资助金额:
$ 68.97万 - 项目类别:
Research Grant
ART: Research to Solutions, Building Translational Capacity in the Central Florida Innovation Ecosystem
ART:从研究到解决方案,在佛罗里达州中部创新生态系统中建设转化能力
- 批准号:
2331319 - 财政年份:2024
- 资助金额:
$ 68.97万 - 项目类别:
Cooperative Agreement
How the mushroom lost its gills: phylogenomics and population genetics of a morphological innovation in the fungal genus Lentinus
蘑菇如何失去鳃:香菇属真菌形态创新的系统基因组学和群体遗传学
- 批准号:
2333266 - 财政年份:2024
- 资助金额:
$ 68.97万 - 项目类别:
Standard Grant