CAREER: Learning the Chromatin Network from ChIP-Seq Data

职业:从 ChIP-Seq 数据学习染色质网络

基本信息

  • 批准号:
    1552309
  • 负责人:
  • 金额:
    $ 76.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Each cell of an organism shares the same nuclear DNA sequence (genome), but different types of cells turn on different sets of genes to carry out their unique functions. To correctly turn on and off the needed sets of genes requires coordinated action by several hundred regulatory molecules. The regulators interact with the genome and with each other: understanding how this happens is one of the most important questions biological researchers are trying to answer. This project will use chromatin immunoprecipitation-sequencing (ChIP-Seq) data, which measures where a particular regulator is located on the genome: this may be zero, one or a few hundred positions out of the billions possible in a genome. Regulators often act together and one may change the action of another, so another part of the proposed work is to discover sites where regulators are co-localized. However, co-localization alone does not show whether regulators interact directly, or indirectly through an intermediate. The overall goal of this project is to develop a computational framework that identifies direct and indirect interactions among regulators, using thousands of ChIP-seq datasets. This framework will develop novel statistical and machine learning techniques to overcome the limitations of existing methods. The techniques that are developed will be applied to answer the following fundamental questions: How do hundreds of regulators interact with each other to regulate the genome? How do these regulator interactions differ across cell types? How do these interactions differ across different species (human, mouse, fly and worm)? The implementation of the new methods will be made publicly available to help many other scientists to study how the human genome works. This project is interdisciplinary in nature and has significant emphasis on interdisciplinary education, through project courses and outreach activities.Identifying the interactions among chromatin regulators, such as transcription factors and histone modifications, is of paramount importance to understand genome regulation. To infer this network of interactions, this research will compare multiple chromatin immunoprecipitation-sequencing (ChIP-seq) datasets, each measuring genome-wide localization of a chromatin regulator. Co-localization may indicate that two regulators interact directly or indirectly through transitive interactions. To identify direct interactions, the proposal aims to develop novel network inference methods to infer conditional dependence relationships (i.e., correlation not explained via any other variables in the network) among a large number of ChIP-seq datasets. While network inference has become a commonly used analysis tool for other types of data, such as gene expression data, the immense size of the ChIP-seq data sets and the strong redundancies present in the data limit the use of existing network inference methods. To resolve these challenges, this research proposes a novel machine learning (ML) framework to enable network inference from large collections of ChIP-seq data: 1) efficient ML methods to infer the chromatin network based on the entire ENCODE ChIP-seq data that contain redundancies; 2) new ML methods to jointly infer the context-specific chromatin networks and the associated genomic contexts by incorporating other types of genomic data; and 3) new ML methods to learn a conserved chromatin network across species and predict chromatin factor interactions even if the factors are not measured in the species of study. For further information see the project web site at: http://suinlee.cs.washington.edu/projects/chromnet.
生物体的每个细胞都有相同的核DNA序列(基因组),但不同类型的细胞开启不同的基因组来执行其独特的功能。为了正确地打开和关闭所需的基因组,需要数百个调节分子的协调作用。 调节器与基因组相互作用,并相互作用:了解这是如何发生的是生物研究人员试图回答的最重要的问题之一。该项目将使用染色质免疫沉淀测序(ChIP-Seq)数据,该数据测量特定调节因子在基因组上的位置:这可能是基因组中数十亿个可能位置中的零个,一个或几百个位置。监管机构经常一起行动,一个监管机构可能会改变另一个监管机构的行动,因此,拟议工作的另一部分是发现监管机构共同定位的网站。然而,共定位本身并不表明是否监管机构直接相互作用,或间接通过中间。该项目的总体目标是开发一个计算框架,使用数千个ChIP-seq数据集识别监管机构之间的直接和间接相互作用。该框架将开发新的统计和机器学习技术,以克服现有方法的局限性。所开发的技术将被应用于回答以下基本问题:数百个监管机构如何相互作用,以调节基因组?这些调节因子的相互作用在不同的细胞类型中有何不同?这些相互作用在不同物种(人类、小鼠、苍蝇和蠕虫)之间有何不同?新方法的实施将公开,以帮助许多其他科学家研究人类基因组的运作方式。该项目是跨学科的,并通过项目课程和外展活动强调跨学科教育。确定染色质调节因子之间的相互作用,如转录因子和组蛋白修饰,对于理解基因组调控至关重要。为了推断这种相互作用网络,本研究将比较多个染色质免疫沉淀测序(ChIP-seq)数据集,每个数据集测量染色质调节因子的全基因组定位。共定位可能表明两个调节因子通过传递性相互作用直接或间接相互作用。为了识别直接交互,该提案旨在开发新的网络推理方法来推断条件依赖关系(即,没有通过网络中的任何其他变量解释的相关性)。虽然网络推理已成为其他类型数据(如基因表达数据)的常用分析工具,但ChIP-seq数据集的巨大规模和数据中存在的强冗余限制了现有网络推理方法的使用。为了解决这些挑战,本研究提出了一种新的机器学习(ML)框架,以实现从大量ChIP-seq数据的网络推断:1)有效的ML方法,以基于包含冗余的整个ENCODE ChIP-seq数据来推断染色质网络; 2)新的ML方法,通过合并其他类型的基因组数据来联合推断上下文特定的染色质网络和相关的基因组上下文;和3)新的ML方法,以学习跨物种的保守染色质网络,并预测染色质因子相互作用,即使这些因子在研究的物种中没有测量。欲了解更多信息,请访问项目网站:http://suinlee.cs.washington.edu/projects/chromnet。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Su-In Lee其他文献

Titanizing on the surface of iron metal foam
  • DOI:
    10.1016/j.tca.2014.02.008
  • 发表时间:
    2014-04-10
  • 期刊:
  • 影响因子:
  • 作者:
    Su-In Lee;Jung-Yeul Yun;Tae-Soo Lim;Byoung-Kee Kim;Young-Min Kong;Jei-Pil Wang;Dong-Won Lee
  • 通讯作者:
    Dong-Won Lee
Deep profiling of gene expression across 18 human cancers
对 18 种人类癌症中基因表达的深度剖析
  • DOI:
    10.1038/s41551-024-01290-8
  • 发表时间:
    2024-12-17
  • 期刊:
  • 影响因子:
    26.600
  • 作者:
    Wei Qiu;Ayse B. Dincer;Joseph D. Janizek;Safiye Celik;Mikael J. Pittet;Kamila Naxerova;Su-In Lee
  • 通讯作者:
    Su-In Lee
Algorithms to estimate Shapley value feature attributions
用于估计夏普利值特征归因的算法
  • DOI:
    10.1038/s42256-023-00657-x
  • 发表时间:
    2023-05-22
  • 期刊:
  • 影响因子:
    23.900
  • 作者:
    Hugh Chen;Ian C. Covert;Scott M. Lundberg;Su-In Lee
  • 通讯作者:
    Su-In Lee

Su-In Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Su-In Lee', 18)}}的其他基金

Collaborative Research: ABI Innovation: Interpretable Machine Learning to Identify Molecular Markers for Complex Phenotypes
合作研究:ABI 创新:可解释的机器学习来识别复杂表型的分子标记
  • 批准号:
    1759487
  • 财政年份:
    2018
  • 资助金额:
    $ 76.83万
  • 项目类别:
    Continuing Grant
ABI Innovation: A Probabilistic Approach to Meta-Analysis of Biological Network Interface
ABI Innovation:生物网络接口元分析的概率方法
  • 批准号:
    1355899
  • 财政年份:
    2014
  • 资助金额:
    $ 76.83万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
  • 批准号:
    2314075
  • 财政年份:
    2024
  • 资助金额:
    $ 76.83万
  • 项目类别:
    Continuing Grant
Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
  • 批准号:
    2337176
  • 财政年份:
    2024
  • 资助金额:
    $ 76.83万
  • 项目类别:
    Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 76.83万
  • 项目类别:
    Continuing Grant
CAREER: Closing the Loop between Learning and Communication for Assistive Robot Arms
职业:关闭辅助机器人手臂的学习和交流之间的循环
  • 批准号:
    2337884
  • 财政年份:
    2024
  • 资助金额:
    $ 76.83万
  • 项目类别:
    Standard Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 76.83万
  • 项目类别:
    Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 76.83万
  • 项目类别:
    Standard Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 76.83万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 76.83万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 76.83万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 76.83万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了