Collaborative Research: ABI Innovation: BCSP: Understanding the design and usage of distributed biological networks
合作研究:ABI 创新:BCSP:了解分布式生物网络的设计和使用
基本信息
- 批准号:1356505
- 负责人:
- 金额:$ 84.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computer science and biology have enjoyed a long and fruitful relationship for decades. Biologists rely on computational methods to analyze and integrate large data sets, while several computational methods were inspired by the high-level design principles of biological systems. Several common aspects and goals of computational and biological systems suggest that we can use one as a source for studies of the other and vice versa. With recent advances in our ability to generate and analyze biological data it is now possible, for the first time, to design new, bi-directional studies that directly link biology and computer science. This form of coupled experimental and computational thinking, which will be utilized in this project, can greatly benefit both biology and computer science. The proposal also seeks to help establish the usefulness of this approach to increase public interest in science and engineering and to provide interdisciplinary educational and research experiences for a diverse population of students.This joint experimental-computational project will use a bi-directional approach to study the design, communication and coordination of networks utilized by Escherichia coli. The overall goal is to determine how biological systems utilize distributed networks over different scales, environments and varying communication strategies. The project will address biological questions ranging from how information processing is performed in signaling networks to the importance of various topological features of E. coli networks to coordination in a population of bacterial cells. In addition to addressing the biological questions these studies seek to provide insights into the design and usage of networks for distributed computational systems that can tolerate harsh environments, failures and limited resources making them applicable to a wide range of real world applications. Distributed networks are utilized by species ranging from single cell organisms to mammals. The proposal seeks to determine shared principles regarding the design and usage of such networks in E. coli. and the findings can be applied to understand similar systems in other species, as well. Beyond the immediate impact of the biological modeling and the algorithms developed, the synergy between computational and biological systems is of great interest to computer scientists, biologists and the general public. The proposal includes an interdisciplinary collaboration between computer scientists, engineers and biologists. Students funded as part of this project will spend time at collaborators' labs from other disciplines leading to interdisciplinary training and the research will support and provide training opportunities for undergraduate and graduate students from underrepresented groups. The PI and co-PIs plan to develop and offer a new class on biologically inspired computational methods and to organize workshops and tutorials in relevant international meetings about the topic of this proposal. Project outcomes will be disseminated at http://www.algorithmsinnature.org.
几十年来,计算机科学和生物学一直有着长期而富有成效的关系。生物学家依靠计算方法来分析和整合大型数据集,而一些计算方法受到生物系统高级设计原则的启发。计算和生物系统的几个共同方面和目标表明,我们可以将其中一个用作研究另一个的来源,反之亦然。随着我们产生和分析生物数据能力的最新进展,现在第一次有可能设计直接将生物学和计算机科学联系起来的新的双向研究。这种实验和计算相结合的思维形式,将在这个项目中使用,可以极大地造福于生物学和计算机科学。该建议还旨在帮助建立这种方法的有用性,以提高公众对科学和工程的兴趣,并为不同群体的学生提供跨学科的教育和研究经验。这一联合实验-计算项目将使用双向方法来研究大肠杆菌利用的网络的设计、沟通和协调。总体目标是确定生物系统如何在不同的规模、环境和不同的通信策略上利用分布式网络。该项目将解决一系列生物学问题,从信号网络中如何进行信息处理,到大肠杆菌网络的各种拓扑特征的重要性,再到细菌细胞种群中的协调。除了解决生物学问题外,这些研究还试图提供对分布式计算系统网络的设计和使用的见解,这些网络可以忍受恶劣的环境、故障和有限的资源,使它们适用于广泛的现实世界应用。从单细胞生物体到哺乳动物,各种物种都在利用分布式网络。该提案旨在确定有关在大肠杆菌中设计和使用此类网络的共同原则。这些发现也可以应用于理解其他物种中类似的系统。除了生物建模和开发的算法的直接影响外,计算机科学家、生物学家和普通公众对计算系统和生物系统之间的协同非常感兴趣。该提案包括计算机科学家、工程师和生物学家之间的跨学科合作。作为该项目一部分资助的学生将花费时间在其他学科的合作者实验室进行跨学科培训,该研究将支持并为来自代表性不足群体的本科生和研究生提供培训机会。私营部门和共同私营部门计划开发和提供一个关于生物启发的计算方法的新课程,并在有关国际会议上组织关于这一提案主题的讲习班和教程。项目成果将在http://www.algorithmsinnature.org.上发布
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ziv Bar-Joseph其他文献
Identifying indications for novel drugs using electronic health records
- DOI:
10.1016/j.compbiomed.2024.109158 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Lukas Adamek;Greg Padiasek;Chaorui Zhang;Ingrid O’Dwyer;Nicolas Capit;Flavio Dormont;Ramon Hernandez;Ziv Bar-Joseph;Brandon Rufino - 通讯作者:
Brandon Rufino
Studying and modelling dynamic biological processes using time-series gene expression data
利用时间序列基因表达数据研究和模拟动态生物过程
- DOI:
10.1038/nrg3244 - 发表时间:
2012-07-18 - 期刊:
- 影响因子:52.000
- 作者:
Ziv Bar-Joseph;Anthony Gitter;Itamar Simon - 通讯作者:
Itamar Simon
Computational discovery of gene modules and regulatory networks
基因模块和调控网络的计算发现
- DOI:
10.1038/nbt890 - 发表时间:
2003-10-12 - 期刊:
- 影响因子:41.700
- 作者:
Ziv Bar-Joseph;Georg K Gerber;Tong Ihn Lee;Nicola J Rinaldi;Jane Y Yoo;François Robert;D Benjamin Gordon;Ernest Fraenkel;Tommi S Jaakkola;Richard A Young;David K Gifford - 通讯作者:
David K Gifford
Ziv Bar-Joseph的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ziv Bar-Joseph', 18)}}的其他基金
Collaborative Research: RECODE: Directed Differentiation of Human Liver Organoids via Computational Analysis and Engineering of Gene Regulatory Networks
合作研究:RECODE:通过基因调控网络的计算分析和工程定向分化人类肝脏类器官
- 批准号:
2134998 - 财政年份:2022
- 资助金额:
$ 84.78万 - 项目类别:
Standard Grant
2nd Workshop on Biological Distributed Algorithms (BDA 2014)
第二届生物分布式算法研讨会(BDA 2014)
- 批准号:
1443291 - 财政年份:2014
- 资助金额:
$ 84.78万 - 项目类别:
Standard Grant
Collaborative Research: Cross Species Analysis of Biological Systems Using Expression Data
合作研究:使用表达数据对生物系统进行跨物种分析
- 批准号:
0965316 - 财政年份:2010
- 资助金额:
$ 84.78万 - 项目类别:
Continuing Grant
CAREER: Modeling Dynamic Systems in the Cell
职业:细胞内动态系统建模
- 批准号:
0448453 - 财政年份:2005
- 资助金额:
$ 84.78万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Sustainable ABI: Arctos Sustainability
合作研究:可持续 ABI:Arctos 可持续性
- 批准号:
2034568 - 财政年份:2021
- 资助金额:
$ 84.78万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
- 批准号:
2201182 - 财政年份:2021
- 资助金额:
$ 84.78万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
- 批准号:
2209978 - 财政年份:2021
- 资助金额:
$ 84.78万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
- 批准号:
2028361 - 财政年份:2020
- 资助金额:
$ 84.78万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
- 批准号:
2048296 - 财政年份:2020
- 资助金额:
$ 84.78万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
- 批准号:
2021734 - 财政年份:2020
- 资助金额:
$ 84.78万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Biofilm Resource and Information Database (BRaID): A Tool to Fuse Diverse Biofilm Data Types
合作研究:ABI 创新:生物膜资源和信息数据库 (BRaID):融合多种生物膜数据类型的工具
- 批准号:
2027203 - 财政年份:2019
- 资助金额:
$ 84.78万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: Building a Pipeline for Validation, Curation and Archiving of Integrative/Hybrid Models
合作研究:ABI 开发:构建集成/混合模型的验证、管理和归档管道
- 批准号:
1756250 - 财政年份:2018
- 资助金额:
$ 84.78万 - 项目类别:
Continuing Grant
Collaborative Research: ABI Development: The next stage in protein-protein docking
合作研究:ABI 开发:蛋白质-蛋白质对接的下一阶段
- 批准号:
1759472 - 财政年份:2018
- 资助金额:
$ 84.78万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model-based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
- 批准号:
1759729 - 财政年份:2018
- 资助金额:
$ 84.78万 - 项目类别:
Standard Grant