HOMOLOGY THEORIES FOR TANGLES AND BORDERED 3-MANIFOLDS

缠结和有界 3 流形的同源理论

基本信息

  • 批准号:
    1358638
  • 负责人:
  • 金额:
    $ 8.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-30 至 2015-09-30
  • 项目状态:
    已结题

项目摘要

Heegaard Floer homology is a new and powerful invariant of 3-manifolds and knots in them. Among many other benefits, it detects the knot genus (the least complicated surface whose boundary is the knot), and in particular, whether a knot is non-trivial. It is a homology theory, and like many homology theories the Euler characteristic is interesting: for knots, the Euler characteristic is one of the oldest knot invariants, the Alexander polynomial. Heegaard Floer homology is part of a family of recent homology theories whose Euler characteristic gives other knot polynomials. But it can be hard to compute, and is defined by ad-hoc rules rather than a concise set of properties. In this project, we will develop a theory of bordered homology invariants: extend the Heegaard Floer homology and other homology theories to objects (knots or 3-manifolds) with boundary, so that when a knot or manifold is split into pieces the invariant for the whole can be computed from the invariants for the pieces. Among other benefits, this will make the theory more computable, and give axioms for the theory.Although knot theory has been studied for many centuries, some of the most elementary questions, such as finding the least complicated surface whose boundary lies on the knot, are still not easy to answer. Heegaard Floer homology is one recent theory that answers this and many other questions in knot theory and topology. However, it is hard to compute even for relatively small knots. In this project, I and my collaborators will extend Heegaard Floer homology (and other related theories) so that they can be computed for pieces of a knot and then built up to the complete knot. This promises to provide a great computational and theoretical tool. Throughout the project, accessibility will be emphasized, and the project will be integrated with, for instance, an undergraduate research program.
Heegaard Floer同调是三维流形及其纽结的一个新的、强有力的不变量。 在许多其他好处中,它检测结属(边界是结的最不复杂的表面),特别是,结是否是非平凡的。 这是一个同调理论,和许多同调理论一样,欧拉特征是有趣的:对于纽结,欧拉特征是最古老的纽结不变量之一,亚历山大多项式。 Heegaard Floer同调是最近同调理论家族的一部分,其欧拉特征给出了其他纽结多项式。 但它可能很难计算,并且是由特定规则定义的,而不是一组简洁的属性。 在这个项目中,我们将发展一个有边界的同调不变量理论:将Heegaard Floer同调和其他同调理论扩展到有边界的对象(结或3-流形),这样当一个结或流形被分割成碎片时,整体的不变量可以从碎片的不变量计算出来。 尽管纽结理论已经被研究了很多个世纪,但是一些最基本的问题,比如找到边界位于纽结上的最不复杂的曲面,仍然不容易回答。Heegaard Floer同调是一个最近的理论,它回答了纽结理论和拓扑学中的这个问题和许多其他问题。 然而,即使对于相对较小的节点也很难计算。 在这个项目中,我和我的合作者将扩展Heegaard Floer同调(和其他相关理论),以便它们可以计算一个结的片段,然后建立完整的结。 这有望提供一个伟大的计算和理论工具。 在整个项目中,将强调可访问性,该项目将与例如本科研究计划相结合。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conformal surface embeddings and extremal length
共形表面嵌入和极值长度
  • DOI:
    10.4171/ggd/673
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kahn, Jeremy;Pilgrim, Kevin M.;Thurston, Dylan P.
  • 通讯作者:
    Thurston, Dylan P.
ELASTIC GRAPHS
  • DOI:
    10.1017/fms.2019.4
  • 发表时间:
    2015-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Thurston
  • 通讯作者:
    D. Thurston
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dylan Thurston其他文献

The Århus integral of rational homology 3-spheres II: Invariance and universality
有理同调 3 域的 Århus 积分 II:不变性和普遍性
  • DOI:
    10.1007/s00029-002-8109-z
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Bar;Stavros Garoufalidis;L. Rozansky;Dylan Thurston
  • 通讯作者:
    Dylan Thurston

Dylan Thurston的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dylan Thurston', 18)}}的其他基金

Computational and Combinatorial Techniques in Conformal Dynamics
共形动力学中的计算和组合技术
  • 批准号:
    2110143
  • 财政年份:
    2021
  • 资助金额:
    $ 8.82万
  • 项目类别:
    Standard Grant
REU Site: Research Expericences for Undergraduates in Mathematics at Indiana University
REU 网站:印第安纳大学数学本科生的研究经验
  • 批准号:
    2051032
  • 财政年份:
    2021
  • 资助金额:
    $ 8.82万
  • 项目类别:
    Continuing Grant
The 2020 Graduate Student Topology and Geometry Conference
2020年研究生拓扑与几何会议
  • 批准号:
    1953179
  • 财政年份:
    2020
  • 资助金额:
    $ 8.82万
  • 项目类别:
    Standard Grant
Rubber Bands to Rational Maps
橡皮筋到有理图
  • 批准号:
    1507244
  • 财政年份:
    2015
  • 资助金额:
    $ 8.82万
  • 项目类别:
    Continuing Grant
HOMOLOGY THEORIES FOR TANGLES AND BORDERED 3-MANIFOLDS
缠结和有界 3 流形的同源理论
  • 批准号:
    1008049
  • 财政年份:
    2010
  • 资助金额:
    $ 8.82万
  • 项目类别:
    Standard Grant
Perturbative Chern-Simons Field Theory
微扰陈-西蒙斯场论
  • 批准号:
    0071550
  • 财政年份:
    2000
  • 资助金额:
    $ 8.82万
  • 项目类别:
    Fellowship Award

相似海外基金

Translations between Type Theories
类型理论之间的翻译
  • 批准号:
    EP/Z000602/1
  • 财政年份:
    2025
  • 资助金额:
    $ 8.82万
  • 项目类别:
    Research Grant
Cognitive imprecision and ageing: experimental investigation of new theories of decision-making
认知不精确与衰老:新决策理论的实验研究
  • 批准号:
    24K00237
  • 财政年份:
    2024
  • 资助金额:
    $ 8.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
REU Site: Quantitative Rules of Life: General Theories across Biological Systems
REU 网站:生命的定量规则:跨生物系统的一般理论
  • 批准号:
    2349052
  • 财政年份:
    2024
  • 资助金额:
    $ 8.82万
  • 项目类别:
    Standard Grant
CAREER: Evaluating Theories of Polymer Crystallization by Directly Calculating the Nucleation Barrier in a Polymer Melt
职业:通过直接计算聚合物熔体中的成核势垒来评估聚合物结晶理论
  • 批准号:
    2338690
  • 财政年份:
    2024
  • 资助金额:
    $ 8.82万
  • 项目类别:
    Continuing Grant
RAPID: Antecedents and Consequences of Disaster-Related Conspiracy Theories
RAPID:灾难相关阴谋论的前因和后果
  • 批准号:
    2326644
  • 财政年份:
    2023
  • 资助金额:
    $ 8.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SLES: Safe Distributional-Reinforcement Learning-Enabled Systems: Theories, Algorithms, and Experiments
协作研究:SLES:安全的分布式强化学习系统:理论、算法和实验
  • 批准号:
    2331781
  • 财政年份:
    2023
  • 资助金额:
    $ 8.82万
  • 项目类别:
    Standard Grant
Development of tensor renormalization group for lattice field theories rich in internal degrees of freedom
丰富内部自由度晶格场论张量重整化群的发展
  • 批准号:
    23K13096
  • 财政年份:
    2023
  • 资助金额:
    $ 8.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Testing alternative theories of gravity in strong gravitational field by searching for gravitational-wave polarization from compact binary coalescences
通过从致密双星聚结中寻找引力波偏振来测试强引力场中的替代引力理论
  • 批准号:
    22KJ1650
  • 财政年份:
    2023
  • 资助金额:
    $ 8.82万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
  • 批准号:
    EP/X01276X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 8.82万
  • 项目类别:
    Fellowship
Quantum Simulation of Non-Equilibrium Processes in Quantum Field Theories
量子场论中非平衡过程的量子模拟
  • 批准号:
    22KJ0957
  • 财政年份:
    2023
  • 资助金额:
    $ 8.82万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了