EAGER: Elevated Carbon Dioxide, Nitrogen Metabolism, and Photorespiration
EAGER:二氧化碳、氮代谢和光呼吸升高
基本信息
- 批准号:1358675
- 负责人:
- 金额:$ 21.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-15 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nitrogen is the mineral element that plants require in greatest amounts. A major source of nitrogen for plants is the nitrate that they absorb from soils. Research in the Bloom laboratory has established that rising CO2 (carbon dioxide) concentration in Earth's atmosphere inhibits the conversion of nitrate into proteins in the shoots of most plant species. One physiological mechanism responsible for this phenomenon involves photorespiration, a process through which sugars in a plant react with oxygen instead of CO2. Photorespiration has been erroneously portrayed as a wasteful process, but in fact, photorespiration generates energy necessary for converting nitrate into protein. Elevated CO2 decreases photorespiration, which leads to declines in plant protein concentrations, slower plant growth, and lower food value. The proposed research will examine how photorespiration transfers energy to convert nitrate into protein. It will examine the chemical structure of the enzymes that facilitate these reactions and to trace the flows of energy from one reaction to another. This information will provide a new perspective on the efficiency of photosynthesis and greater insight on the influence that rising CO2 will have on the distribution of plant species.Rising CO2 concentration in the atmosphere inhibits NO3 assimilation into proteins in the shoots of C3 plants and impedes their growth when NO3 is the predominant N source. One process that links CO2 concentration to shoot NO3 assimilation is photorespiration. Photorespiration stimulates the export of malic acid from chloroplasts and increases the availability of NADH in the cytoplasm that empowers the reduction of NO3 to NO2, the first step of NO3 assimilation. CO2 enrichment decreases photorespiration, decreasing the amount of NADH available for NO3 reduction. The proposed research will examine this mechanism in greater detail. Nearly all studies of Rubisco are conducted in the presence of magnesium, which favors carboxylation, rather than in the presence of manganese, which favors oxygenation and electron transfers that might stimulate NADP+ reduction. The objectives of this research are: 1) use X-ray crystallography to confirm the locations of manganese and NADP+ within tobacco Rubisco, 2) identify via electron paramagnetic resonance (EPR) the structural changes of transient enzyme-substrate complexes and catalytic reaction intermediates during photorespiration, and 3) conduct site-directed mutagenesis of residues in the catalytic large subunit of Rubisco that are involved with photorespiratory electron transfer to provide powerful structural probes. Energy transfers between photorespiration and nitrate assimilation should explain why over 95% of higher plant species still rely solely on C3 fixation even after more than 20 million years of relatively low atmospheric CO2 concentrations and multiple introductions of the C4 pathway: C3 fixation is more efficient than previously thought because photorespiration supports nitrate assimilation. Moreover, these mechanisms should explain why plant responses to elevated CO2 are highly variable: in C3 plants that are dependent on nitrate, CO2 inhibition of shoot nitrate assimilation causes organic N deficiencies and slows growth, whereas in C3 plants dependent on ammonium, elevated CO2 promotes growth.
氮是植物最需要的矿物元素。植物氮的主要来源是它们从土壤中吸收的硝酸盐。Bloom实验室的研究已经确定,地球大气中二氧化碳浓度的上升会抑制大多数植物物种的芽中硝酸盐转化为蛋白质。导致这种现象的一种生理机制涉及光呼吸,这是一种植物中的糖与氧气而不是二氧化碳反应的过程。光呼吸被错误地描述为一个浪费的过程,但事实上,光呼吸产生的能量是将硝酸盐转化为蛋白质所必需的。CO2浓度升高会降低光呼吸作用,导致植物蛋白质浓度下降,植物生长缓慢,食物价值降低。这项拟议中的研究将研究光呼吸如何转移能量将硝酸盐转化为蛋白质。它将研究促进这些反应的酶的化学结构,并追踪能量从一个反应到另一个反应的流动。这一信息将提供一个新的角度光合作用的效率和更大的洞察力的影响,上升的CO2浓度将对植物物种的分布。上升的CO2浓度在大气中抑制NO3同化成蛋白质的C3植物的芽,并阻碍其生长时,NO3是主要的N源。光呼吸是将CO2浓度与地上部NO3同化联系起来的一个过程。光呼吸刺激苹果酸从叶绿体中输出,并增加细胞质中NADH的可用性,从而使NO3还原为NO2,这是NO3同化的第一步。CO2富集降低了光呼吸,减少了可用于NO3还原的NADH的量。拟议的研究将更详细地研究这一机制。几乎所有的Rubisco研究都是在镁的存在下进行的,这有利于羧化,而不是在锰的存在下进行的,这有利于氧化和电子转移,可能会刺激NADP+还原。本研究的目标是:1)利用X射线晶体学确定锰和NADP+在烟草Rubisco中的位置,2)通过电子顺磁共振(EPR)鉴定光呼吸过程中瞬时酶-底物复合物和催化反应中间体的结构变化,及3)进行现场-在Rubisco的催化大亚基中涉及光呼吸电子转移的残基的定向诱变,结构探针光呼吸和硝酸盐同化之间的能量转移应该解释为什么超过95%的高等植物物种仍然只依赖C3固定,即使在超过2000万年的相对较低的大气CO2浓度和C4途径的多次引入之后:C3固定比以前认为的更有效,因为光呼吸支持硝酸盐同化。此外,这些机制应该解释为什么植物对CO2浓度升高的反应是高度可变的:在依赖于硝酸盐的C3植物中,CO2抑制地上部硝酸盐同化导致有机氮缺乏并减缓生长,而在依赖于铵的C3植物中,CO2浓度升高促进生长。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Manganese binding to Rubisco could drive a photorespiratory pathway that increases the energy efficiency of photosynthesis
- DOI:10.1038/s41477-018-0191-0
- 发表时间:2018-07-01
- 期刊:
- 影响因子:18
- 作者:Bloom, Arnold J.;Lancaster, Kyle M.
- 通讯作者:Lancaster, Kyle M.
Relative association of Rubisco with manganese and magnesium as a regulatory mechanism in plants
- DOI:10.1111/ppl.12616
- 发表时间:2017-12-01
- 期刊:
- 影响因子:6.4
- 作者:Bloom, Arnold J.;Kameritsch, Petra
- 通讯作者:Kameritsch, Petra
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arnold Bloom其他文献
Effect of short and long term chlorpropamide treatment of insulin release and blood-glucose.
短期和长期氯丙酰胺治疗对胰岛素释放和血糖的影响。
- DOI:
- 发表时间:
1974 - 期刊:
- 影响因子:0
- 作者:
A. Barnes;MaryF. Crowley;KatherineJ.T. Garbien;Arnold Bloom - 通讯作者:
Arnold Bloom
Clinical application of “Dextrostix” in estimating blood glucose levels
- DOI:
10.1007/bf01257919 - 发表时间:
1966-04-01 - 期刊:
- 影响因子:10.200
- 作者:
Margaret G. Kemball;Arnold Bloom - 通讯作者:
Arnold Bloom
Herpes, AIDS and Other Sexually Transmitted Diseases
疱疹、艾滋病和其他性传播疾病
- DOI:
- 发表时间:
1986 - 期刊:
- 影响因子:0
- 作者:
Arnold Bloom - 通讯作者:
Arnold Bloom
Aetiology and pathogenesis of diabetes
- DOI:
10.1007/bf02938134 - 发表时间:
1979-09-01 - 期刊:
- 影响因子:1.600
- 作者:
Arnold Bloom - 通讯作者:
Arnold Bloom
Arnold Bloom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arnold Bloom', 18)}}的其他基金
Collaborative Research: Elucidating the Influence of Metal Binding on Electronic/Geometric Structure-Function Relationships in Photorespiration
合作研究:阐明金属结合对光呼吸中电子/几何结构-功能关系的影响
- 批准号:
1904535 - 财政年份:2019
- 资助金额:
$ 21.89万 - 项目类别:
Standard Grant
Use of nitrate and ammonium at elevated CO2 in Arabidopsis
在拟南芥中高二氧化碳浓度下使用硝酸盐和铵
- 批准号:
1655810 - 财政年份:2017
- 资助金额:
$ 21.89万 - 项目类别:
Continuing Grant
Photorespiration, Nitrate Assimilation, and Climate Change
光呼吸、硝酸盐同化和气候变化
- 批准号:
0818435 - 财政年份:2008
- 资助金额:
$ 21.89万 - 项目类别:
Continuing Grant
Global Change and Nitrate Assimilation
全球变化和硝酸盐同化
- 批准号:
0343127 - 财政年份:2004
- 资助金额:
$ 21.89万 - 项目类别:
Continuing Grant
Nitrate Assimilation under Elevated CO2 and Leaf N2O Emissions
CO2 和叶 N2O 排放量升高时的硝酸盐同化
- 批准号:
9974927 - 财政年份:1999
- 资助金额:
$ 21.89万 - 项目类别:
Continuing Grant
Acquisition of Stable Isotope Ratio Mass Spectrometer and Sample Preparation Systems
购置稳定同位素比质谱仪和样品制备系统
- 批准号:
9601871 - 财政年份:1996
- 资助金额:
$ 21.89万 - 项目类别:
Standard Grant
Chilling and Ammonium Absorption in Wild and Cultivated Tomatoes
野生和栽培番茄的冷冻和铵吸收
- 批准号:
9306521 - 财政年份:1993
- 资助金额:
$ 21.89万 - 项目类别:
Continuing Grant
Ammonium and Nitrate as Nitrogen Sources for Plant Growth
铵和硝酸盐作为植物生长的氮源
- 批准号:
8916637 - 财政年份:1990
- 资助金额:
$ 21.89万 - 项目类别:
Continuing Grant
Root Growth Patterns in Relation to Nitrogen Availability
根系生长模式与氮利用率的关系
- 批准号:
8806585 - 财政年份:1988
- 资助金额:
$ 21.89万 - 项目类别:
Standard Grant
The Efficiency of Nitrogen Acquisition in Wild and Cultivated Taxa of Hordeum and Lycopersicon
野生和栽培大麦和番茄类群的氮获取效率
- 批准号:
8416893 - 财政年份:1985
- 资助金额:
$ 21.89万 - 项目类别:
Continuing Grant
相似海外基金
The impact of elevated carbon dioxide concentration on pit membrane ultrastructure in trees, and its effect on drought resistance
二氧化碳浓度升高对树木纹孔膜超微结构的影响及其抗旱作用
- 批准号:
23KJ0003 - 财政年份:2023
- 资助金额:
$ 21.89万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Below Ground Control of Ecosystem Carbon Sequestration under Elevated CO2
二氧化碳浓度升高下生态系统碳封存的地下控制
- 批准号:
NE/X000273/1 - 财政年份:2023
- 资助金额:
$ 21.89万 - 项目类别:
Research Grant
Role of fungal communities in carbon and nutrient cycling in forest soils under elevated atmospheric CO2 concentrations
大气二氧化碳浓度升高下森林土壤中真菌群落在碳和养分循环中的作用
- 批准号:
2874480 - 财政年份:2023
- 资助金额:
$ 21.89万 - 项目类别:
Studentship
Investigating the mechanisms behind an abnormally elevated internal carbon dioxide content observed in insects that secondarily evolved water-breathing capabilities
研究在继发水呼吸能力的昆虫中观察到的异常升高的内部二氧化碳含量背后的机制
- 批准号:
547238-2020 - 财政年份:2022
- 资助金额:
$ 21.89万 - 项目类别:
Postgraduate Scholarships - Doctoral
CAREER: Progression from soot to nanocrystalline carbon in elevated temperature flames
职业生涯:高温火焰中从烟灰到纳米晶碳的进展
- 批准号:
2143979 - 财政年份:2022
- 资助金额:
$ 21.89万 - 项目类别:
Continuing Grant
Assessing the Contribution of Nitrogen from Soil Organic Matter on Plant Growth Response to Elevated Carbon Dioxide
评估土壤有机质中的氮对植物生长对二氧化碳升高的反应的贡献
- 批准号:
2132002 - 财政年份:2022
- 资助金额:
$ 21.89万 - 项目类别:
Standard Grant
Organismal responses of freshwater fish to elevated carbon dioxide
淡水鱼对二氧化碳升高的机体反应
- 批准号:
RGPIN-2019-06125 - 财政年份:2022
- 资助金额:
$ 21.89万 - 项目类别:
Discovery Grants Program - Individual
Investigating the mechanisms behind an abnormally elevated internal carbon dioxide content observed in insects that secondarily evolved water-breathing capabilities
研究在继发水呼吸能力的昆虫中观察到的异常升高的内部二氧化碳含量背后的机制
- 批准号:
547238-2020 - 财政年份:2021
- 资助金额:
$ 21.89万 - 项目类别:
Postgraduate Scholarships - Doctoral
Organismal responses of freshwater fish to elevated carbon dioxide
淡水鱼对二氧化碳升高的机体反应
- 批准号:
RGPIN-2019-06125 - 财政年份:2021
- 资助金额:
$ 21.89万 - 项目类别:
Discovery Grants Program - Individual
Organismal responses of freshwater fish to elevated carbon dioxide
淡水鱼对二氧化碳升高的机体反应
- 批准号:
RGPIN-2019-06125 - 财政年份:2020
- 资助金额:
$ 21.89万 - 项目类别:
Discovery Grants Program - Individual