Below Ground Control of Ecosystem Carbon Sequestration under Elevated CO2

二氧化碳浓度升高下生态系统碳封存的地下控制

基本信息

  • 批准号:
    NE/X000273/1
  • 负责人:
  • 金额:
    $ 77.92万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

As atmospheric CO2 concentrations rise, plants can photosynthesise more and take more CO2 out of the atmosphere. This carbon (C) can then be stored in plants and soils, reducing atmospheric CO2 and global warming. However, our ability to predict global increases in C uptake are severely constrained because there are so few studies on the effects of elevated CO2 (eCO2) on ecosystems where the availability of the nutrient phosphorus (P) restricts plant growth (P-limited ecosystems) - yet more than 40% of the world's ecosystems are P-limited. Furthermore, it is below ground processes, including interactions between plants, soil microbes and soil chemistry, that will control the ability of these ecosystem to store more C, yet we have very little understanding of how these processes respond to eCO2 in P-limited ecosystems. Understanding below ground responses is essential because soils are the largest store of C in terrestrial ecosystems so we must understand how elevated CO2 changes stores of C in soils as well as in plants. Furthermore, soil C inputs influence the cycling of P and so can determine whether plants can gain the extra P needed for increased growth and C gain, while the fate of C in soil will determine whether it contributes to long-term C stocks or is released. This project will address these knowledge needs using our unique experiment that exposes two contrasting grassland ecosystems (a limestone and an acidic grassland) to elevated CO2 in a natural outdoor setting using Free Air CO2 Enrichment technology (FACE). The grasslands are both P-limited but, critically, plants have responded to eCO2 in directly opposing ways with the limestone grassland increasing biomass, and the acidic grassland reducing biomass. Significantly, the grasslands have contrasting soils linked to developmental age that makes them well suited to gaining mechanistic insights that can be applied broadly across P-limited soils, and may explain the opposing responses. The CO2 enrichment is in combination with P and N nutrient manipulations that allow us to investigate the importance of P-limitation and the influence of globally important atmospheric N deposition that can also influence P cycling. There is a strong theoretical basis for hypothesising that it is the differences in soil biogeochemistry that explains the contrasting plant biomass responses to eCO2: in developmentally young soils (such as our limestone soil), increased C inputs may enhance weathering of primary P-minerals like calcium phosphates and stimulate enzymatic mineralization of organic P, leading to greater plant P availability for growth and C sequestration. In contrast, in soils at later stages of pedogenesis (such as our acidic soil), P is locked up in secondary minerals that are difficult for soil microbes and plants to access. While elevated CO2 may provide the C for enzymes to increase mineralisation of organic P, this is predominantly done by soil microbes which will have reduced efficacy in acidic soil, leading to strong competition for P between plants and microbes, limiting the plant growth benefit of elevated CO2. Critically, these theories remain untested.Using a combination of stable- and radioisotope C tracers, we will trace the short and long-term fate of C and its pathway through plants, microbes and soil. We will determine how the fate of new plant C inputs controls P dynamics by using P isotope tracers to determine how CO2 influences P availability, plant uptake, and competition for P with soil microbes and the soil matrix. Finally, we will use advanced molecular approaches to understand how soil microbes respond to the C inputs and how this influences their cycling of P and its availability to plants. This work aims to determine mechanistically the reasons for the contrasting plant productivity responses in the two grasslands and, in so doing, develop the broad understanding needed to predict future rates of C uptake in P-limited ecosystems.
随着大气中二氧化碳浓度的上升,植物可以进行更多的光合作用,并从大气中吸收更多的二氧化碳。这些碳(C)然后可以储存在植物和土壤中,减少大气中的二氧化碳和全球变暖。然而,我们预测全球碳吸收增加的能力受到严重限制,因为关于二氧化碳(Eco2)升高对营养磷(P)可获得性限制植物生长的生态系统(P-受限生态系统)的影响的研究非常少--然而世界上40%以上的生态系统是P-受限的。此外,正是地下过程,包括植物、土壤微生物和土壤化学之间的相互作用,将控制这些生态系统储存更多碳的能力,但我们对这些过程如何在磷有限的生态系统中响应Eco2知之甚少。了解地下的反应是至关重要的,因为土壤是陆地生态系统中最大的碳储量,所以我们必须了解高二氧化碳是如何改变土壤和植物中碳的储量的。此外,土壤C输入影响P的循环,因此可以决定植物是否能够获得生长和C吸收所需的额外P,而C在土壤中的去向将决定它是有助于长期的C储存还是被释放。该项目将利用我们独特的实验来满足这些知识需求,该实验利用自由空气二氧化碳浓缩技术(FACE)在自然室外环境中将两个不同的草原生态系统(石灰岩和酸性草原)暴露在二氧化碳浓度升高的环境中。草地都是磷有限的,但关键的是,植物对Eco2的反应是以直接相反的方式进行的,石灰岩草地增加生物量,酸性草地减少生物量。值得注意的是,草原具有与发育年龄相关的不同土壤,这使得它们非常适合获得可以广泛应用于磷限制土壤的机械见解,并可能解释相反的反应。二氧化碳的增加与磷和氮的营养操作相结合,使我们能够研究磷限制的重要性,以及全球重要的大气氮沉积的影响,这也可以影响磷的循环。土壤生物地球化学的差异解释了植物生物量对Eco2的不同反应,这一假设有很强的理论基础:在发育较年轻的土壤(如我们的石灰岩土壤)中,增加C输入可能会加强初级磷矿如磷酸钙的风化,并刺激有机P的酶促矿化,从而导致更多的植物P可用于生长和C固定。相反,在土壤发育后期(如我们的酸性土壤),磷被锁定在次生矿物质中,土壤微生物和植物很难获得这些次生矿物质。虽然二氧化碳浓度升高可能会为酶类提供C以增加有机磷的矿化,但这主要是由土壤微生物完成的,这将降低土壤在酸性土壤中的效率,导致植物与微生物之间对磷的激烈竞争,限制了二氧化碳浓度升高对植物生长的好处。关键的是,这些理论仍然没有得到检验。使用稳定和放射性同位素C示踪剂的组合,我们将追踪C的短期和长期命运及其通过植物、微生物和土壤的途径。我们将通过使用磷同位素示踪剂来确定二氧化碳如何影响磷的有效性、植物吸收以及与土壤微生物和土壤基质对磷的竞争,从而确定新植物C输入的命运如何控制磷的动态变化。最后,我们将使用先进的分子方法来了解土壤微生物如何对C输入做出反应,以及这如何影响它们对P的循环及其对植物的有效性。这项工作旨在从机械上确定两个草原上植物生产力反应不同的原因,并通过这样做,发展对预测未来磷限制生态系统中碳吸收速率所需的广泛理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gareth Phoenix其他文献

Gareth Phoenix的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gareth Phoenix', 18)}}的其他基金

Phosphorus Limitation And ecosystem responses to Carbon dioxide Enrichment (PLACE)
磷限制和生态系统对二氧化碳富集的反应 (PLACE)
  • 批准号:
    NE/N010132/1
  • 财政年份:
    2017
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Research Grant
CYCLOPS: Carbon Cycling Linkages of Permafrost Systems
CYCLOPS:永久冻土系统的碳循环联系
  • 批准号:
    NE/K00025X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Research Grant
Resource partitioning for phosphorus (P) in a P-limited plant community: preference for different soil P sources among co-occurring species
有限磷植物群落中磷(P)的资源分配:共生物种对不同土壤磷源的偏好
  • 批准号:
    NE/H01179X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Research Grant
Is plant biodiversity loss and recovery in N polluted ecosystems regulated by phosphorus acquisition?
氮污染生态系统中植物生物多样性的丧失和恢复是否受到磷获取的调节?
  • 批准号:
    NE/D00036X/1
  • 财政年份:
    2006
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Research Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Bio-Mediated Technique to Control Phase Changes of Porous Media in Seasonally Frozen Ground
控制季节性冻土中多孔介质相变的生物介导技术
  • 批准号:
    2314099
  • 财政年份:
    2023
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Standard Grant
Developing control method of ground resistance using sand flowing fenomenon by vibration for underground exploration robot
开发地下勘探机器人振动流沙现象地面阻力控制方法
  • 批准号:
    23K13296
  • 财政年份:
    2023
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Nonlinear Ground Vibration Testing using Control-based Continuation
使用基于控制的延续进行非线性地面振动测试
  • 批准号:
    EP/W032236/1
  • 财政年份:
    2023
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Research Grant
A Study of Active Control for Pedestrian Flow by Usingof Grid Controled Ground Viecles
网格控制地面车辆主动控制人流的研究
  • 批准号:
    23H01588
  • 财政年份:
    2023
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Design, simulation and control of air- and ground-source variable refrigerant flow heat pump systems
空气源和地源可变制冷剂流量热泵系统的设计、仿真和控制
  • 批准号:
    RGPIN-2018-04471
  • 财政年份:
    2022
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Discovery Grants Program - Individual
Ground-effect aerodynamics and wingtip vortex and their control
地效空气动力学和翼尖涡及其控制
  • 批准号:
    RGPIN-2020-05271
  • 财政年份:
    2022
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Discovery Grants Program - Individual
Portable, robotic footwear for real-time control of foot-ground stiffness
用于实时控制足部地面刚度的便携式机器人鞋
  • 批准号:
    10678900
  • 财政年份:
    2022
  • 资助金额:
    $ 77.92万
  • 项目类别:
Ground control strategies for burst prone mines
易爆地雷的地面控制策略
  • 批准号:
    RGPIN-2020-05645
  • 财政年份:
    2022
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Discovery Grants Program - Individual
Portable, robotic footwear for real-time control of foot-ground stiffness
用于实时控制足部地面刚度的便携式机器人鞋
  • 批准号:
    10510157
  • 财政年份:
    2022
  • 资助金额:
    $ 77.92万
  • 项目类别:
Transient Trajectory Shaping Control Strategy Development for an Autonomous Capable Ground Vehicle
具有自主能力的地面车辆的瞬态轨迹成形控制策略开发
  • 批准号:
    RGPIN-2020-06787
  • 财政年份:
    2022
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了