Below Ground Control of Ecosystem Carbon Sequestration under Elevated CO2

二氧化碳浓度升高下生态系统碳封存的地下控制

基本信息

  • 批准号:
    NE/X000273/1
  • 负责人:
  • 金额:
    $ 77.92万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

As atmospheric CO2 concentrations rise, plants can photosynthesise more and take more CO2 out of the atmosphere. This carbon (C) can then be stored in plants and soils, reducing atmospheric CO2 and global warming. However, our ability to predict global increases in C uptake are severely constrained because there are so few studies on the effects of elevated CO2 (eCO2) on ecosystems where the availability of the nutrient phosphorus (P) restricts plant growth (P-limited ecosystems) - yet more than 40% of the world's ecosystems are P-limited. Furthermore, it is below ground processes, including interactions between plants, soil microbes and soil chemistry, that will control the ability of these ecosystem to store more C, yet we have very little understanding of how these processes respond to eCO2 in P-limited ecosystems. Understanding below ground responses is essential because soils are the largest store of C in terrestrial ecosystems so we must understand how elevated CO2 changes stores of C in soils as well as in plants. Furthermore, soil C inputs influence the cycling of P and so can determine whether plants can gain the extra P needed for increased growth and C gain, while the fate of C in soil will determine whether it contributes to long-term C stocks or is released. This project will address these knowledge needs using our unique experiment that exposes two contrasting grassland ecosystems (a limestone and an acidic grassland) to elevated CO2 in a natural outdoor setting using Free Air CO2 Enrichment technology (FACE). The grasslands are both P-limited but, critically, plants have responded to eCO2 in directly opposing ways with the limestone grassland increasing biomass, and the acidic grassland reducing biomass. Significantly, the grasslands have contrasting soils linked to developmental age that makes them well suited to gaining mechanistic insights that can be applied broadly across P-limited soils, and may explain the opposing responses. The CO2 enrichment is in combination with P and N nutrient manipulations that allow us to investigate the importance of P-limitation and the influence of globally important atmospheric N deposition that can also influence P cycling. There is a strong theoretical basis for hypothesising that it is the differences in soil biogeochemistry that explains the contrasting plant biomass responses to eCO2: in developmentally young soils (such as our limestone soil), increased C inputs may enhance weathering of primary P-minerals like calcium phosphates and stimulate enzymatic mineralization of organic P, leading to greater plant P availability for growth and C sequestration. In contrast, in soils at later stages of pedogenesis (such as our acidic soil), P is locked up in secondary minerals that are difficult for soil microbes and plants to access. While elevated CO2 may provide the C for enzymes to increase mineralisation of organic P, this is predominantly done by soil microbes which will have reduced efficacy in acidic soil, leading to strong competition for P between plants and microbes, limiting the plant growth benefit of elevated CO2. Critically, these theories remain untested.Using a combination of stable- and radioisotope C tracers, we will trace the short and long-term fate of C and its pathway through plants, microbes and soil. We will determine how the fate of new plant C inputs controls P dynamics by using P isotope tracers to determine how CO2 influences P availability, plant uptake, and competition for P with soil microbes and the soil matrix. Finally, we will use advanced molecular approaches to understand how soil microbes respond to the C inputs and how this influences their cycling of P and its availability to plants. This work aims to determine mechanistically the reasons for the contrasting plant productivity responses in the two grasslands and, in so doing, develop the broad understanding needed to predict future rates of C uptake in P-limited ecosystems.
随着大气中二氧化碳浓度的上升,植物可以进行更多的光合作用,并从大气中吸收更多的二氧化碳。这些碳(C)可以储存在植物和土壤中,减少大气中的二氧化碳和全球变暖。然而,我们预测全球碳吸收增加的能力受到严重限制,因为关于二氧化碳(eCO2)升高对营养磷(P)可用性限制植物生长的生态系统(限磷生态系统)的影响的研究很少,而世界上超过40%的生态系统是限磷的。此外,它是地下过程,包括植物、土壤微生物和土壤化学之间的相互作用,将控制这些生态系统储存更多C的能力,但我们对这些过程如何在磷限制的生态系统中响应eCO2知之甚少。了解地下的反应是至关重要的,因为土壤是陆地生态系统中最大的碳储存地,所以我们必须了解二氧化碳的升高是如何改变土壤和植物中碳储存的。此外,土壤C的输入影响P的循环,因此可以决定植物是否能够获得额外的P,以促进生长和C的增加,而土壤中C的命运将决定它是否有助于长期的C储备或被释放。该项目将通过我们独特的实验来解决这些知识需求,该实验使用自由空气二氧化碳富集技术(FACE),将两个截然不同的草地生态系统(石灰石和酸性草地)暴露在自然室外环境中升高的二氧化碳中。两种草地都是磷有限的,但重要的是,植物对eCO2的响应方式直接相反,石灰岩草地增加了生物量,酸性草地减少了生物量。值得注意的是,草原具有与发育年龄相关的对比土壤,这使得它们非常适合获得可以广泛应用于磷限制土壤的机制见解,并可能解释相反的反应。CO2富集与P和N养分操纵相结合,使我们能够研究P限制的重要性以及全球重要的大气N沉降的影响,这也可以影响P循环。有一个强有力的理论基础假设,土壤生物地球化学的差异解释了植物生物量对eCO2的不同反应:在发育中的年轻土壤(如我们的石灰石土壤)中,增加的C输入可能会增强磷酸钙等初级磷矿物的风化作用,并刺激有机磷的酶矿化,从而提高植物生长和碳封存的P可利用性。相反,在土壤形成后期的土壤中(比如我们的酸性土壤),磷被锁在次生矿物质中,土壤微生物和植物难以接近。虽然升高的CO2可能为酶提供C来增加有机磷的矿化,但这主要是由土壤微生物完成的,这在酸性土壤中会降低效率,导致植物和微生物之间对P的激烈竞争,限制了植物从升高的CO2中获得的生长益处。关键的是,这些理论仍未经检验。利用稳定和放射性同位素C示踪剂的组合,我们将追踪C的短期和长期命运及其通过植物、微生物和土壤的途径。我们将通过使用磷同位素示踪剂来确定二氧化碳如何影响磷有效性、植物吸收以及与土壤微生物和土壤基质对磷的竞争,从而确定新植物C输入的命运如何控制磷动力学。最后,我们将使用先进的分子方法来了解土壤微生物如何响应C输入,以及这如何影响它们的P循环及其对植物的可用性。这项工作旨在从机制上确定两个草原上植物生产力响应差异的原因,并在此过程中,发展预测未来磷限制生态系统中碳吸收速率所需的广泛理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gareth Phoenix其他文献

Gareth Phoenix的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gareth Phoenix', 18)}}的其他基金

Phosphorus Limitation And ecosystem responses to Carbon dioxide Enrichment (PLACE)
磷限制和生态系统对二氧化碳富集的反应 (PLACE)
  • 批准号:
    NE/N010132/1
  • 财政年份:
    2017
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Research Grant
CYCLOPS: Carbon Cycling Linkages of Permafrost Systems
CYCLOPS:永久冻土系统的碳循环联系
  • 批准号:
    NE/K00025X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Research Grant
Resource partitioning for phosphorus (P) in a P-limited plant community: preference for different soil P sources among co-occurring species
有限磷植物群落中磷(P)的资源分配:共生物种对不同土壤磷源的偏好
  • 批准号:
    NE/H01179X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Research Grant
Is plant biodiversity loss and recovery in N polluted ecosystems regulated by phosphorus acquisition?
氮污染生态系统中植物生物多样性的丧失和恢复是否受到磷获取的调节?
  • 批准号:
    NE/D00036X/1
  • 财政年份:
    2006
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Research Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Bio-Mediated Technique to Control Phase Changes of Porous Media in Seasonally Frozen Ground
控制季节性冻土中多孔介质相变的生物介导技术
  • 批准号:
    2314099
  • 财政年份:
    2023
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Standard Grant
Developing control method of ground resistance using sand flowing fenomenon by vibration for underground exploration robot
开发地下勘探机器人振动流沙现象地面阻力控制方法
  • 批准号:
    23K13296
  • 财政年份:
    2023
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Nonlinear Ground Vibration Testing using Control-based Continuation
使用基于控制的延续进行非线性地面振动测试
  • 批准号:
    EP/W032236/1
  • 财政年份:
    2023
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Research Grant
A Study of Active Control for Pedestrian Flow by Usingof Grid Controled Ground Viecles
网格控制地面车辆主动控制人流的研究
  • 批准号:
    23H01588
  • 财政年份:
    2023
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Design, simulation and control of air- and ground-source variable refrigerant flow heat pump systems
空气源和地源可变制冷剂流量热泵系统的设计、仿真和控制
  • 批准号:
    RGPIN-2018-04471
  • 财政年份:
    2022
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Discovery Grants Program - Individual
Ground-effect aerodynamics and wingtip vortex and their control
地效空气动力学和翼尖涡及其控制
  • 批准号:
    RGPIN-2020-05271
  • 财政年份:
    2022
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Discovery Grants Program - Individual
Portable, robotic footwear for real-time control of foot-ground stiffness
用于实时控制足部地面刚度的便携式机器人鞋
  • 批准号:
    10678900
  • 财政年份:
    2022
  • 资助金额:
    $ 77.92万
  • 项目类别:
Ground control strategies for burst prone mines
易爆地雷的地面控制策略
  • 批准号:
    RGPIN-2020-05645
  • 财政年份:
    2022
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Discovery Grants Program - Individual
Portable, robotic footwear for real-time control of foot-ground stiffness
用于实时控制足部地面刚度的便携式机器人鞋
  • 批准号:
    10510157
  • 财政年份:
    2022
  • 资助金额:
    $ 77.92万
  • 项目类别:
Investigation of Turbulent Flow Separation and the Development of Flow Control Strategies for Bluff Bodies in Ground Proximity
近地钝体湍流分离的研究和流动控制策略的开发
  • 批准号:
    RGPIN-2018-05369
  • 财政年份:
    2022
  • 资助金额:
    $ 77.92万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了