Resolving Parametric Misspecification: Joint Schemes for Computation and Learning
解决参数错误指定:计算和学习的联合方案
基本信息
- 批准号:1400217
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to consider the solution of convex optimization and variational inequality problems complicated by misspecified parameters. A possibly naive sequential approach would first (i) estimate the problem parameters accurately through learning; and then (ii) solve the associated computational problem. Unfortunately, as the learning problems grow in size and complexity, such a framework is hampered by the significant increase in solution time to obtain accurate parameter estimates. Furthermore, any parameter estimation error propagates to the computational problem, possibly with devastating impact. Accordingly, on contrary to the naïve sequential approach, this research will aim to develop gradient-based algorithms that can simultaneously learn the misspecified parameter and solve the computational problem corresponding to the correct parameter. More generally, these coupled schemes will be shown to be capable of contending with problem intricacies such as uncertainty and nonsmoothness. Importantly, this methodology will cope with situations where the observations used in the learning problem may depend on the computational process. The research will emphasize the development of global convergence statements, iteration complexity results, regret bounds with reference to offline algorithms, and trade-offs between exploration and exploitation.If successful, this research will find impact at several levels. At a fundamental level, this research is expected to lead to new truly adaptive algorithms that can both learn parameters and optimize the associated systems simultaneously. The algorithms will make impact through addressing a wide range of large-scale application problems that are complicated by misspecification, including portfolio selection problems and distributed optimization of networked systems. Finally, the educational component of this project will comprise of undergraduate research projects and high school course modules.
这项研究的目的是考虑凸优化和变分不等式问题的解,这些问题由错误指定的参数复杂。一种可能很幼稚的序贯方法将首先(I)通过学习准确地估计问题参数;然后(Ii)解决相关的计算问题。不幸的是,随着学习问题的规模和复杂性的增长,这样的框架受到了显著增加的求解时间的阻碍,以获得准确的参数估计。此外,任何参数估计误差都会传播到计算问题上,可能会产生毁灭性的影响。因此,与朴素的序贯方法相反,本研究的目标是开发基于梯度的算法,该算法可以同时学习错误指定的参数,并解决与正确参数对应的计算问题。更广泛地说,这些耦合方案将被证明能够应对复杂的问题,如不确定性和非平稳性。重要的是,这种方法将处理在学习问题中使用的观察可能取决于计算过程的情况。这项研究将着重于全局收敛语句、迭代复杂性结果、参考离线算法的遗憾界限以及探索和利用之间的权衡。如果成功,这项研究将在多个层面上产生影响。从根本上讲,这项研究有望带来新的真正自适应的算法,既能学习参数,又能同时优化相关系统。这些算法将通过解决因错误说明而复杂的一系列大规模应用问题来产生影响,包括投资组合选择问题和网络系统的分布式优化。最后,该项目的教育部分将由本科生研究项目和高中课程模块组成。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Optimization Algorithms for Robust Principal Component Analysis and Its Variants
- DOI:10.1109/jproc.2018.2846606
- 发表时间:2018-06
- 期刊:
- 影响因子:20.6
- 作者:Shiqian Ma;N. Aybat
- 通讯作者:Shiqian Ma;N. Aybat
Distributed Linearized Alternating Direction Method of Multipliers for Composite Convex Consensus Optimization
- DOI:10.1109/tac.2017.2713046
- 发表时间:2018-01-01
- 期刊:
- 影响因子:6.8
- 作者:Aybat, N. S.;Wang, Z.;Ma, S.
- 通讯作者:Ma, S.
Multi-agent constrained optimization of a strongly convex function over time-varying directed networks
- DOI:10.1109/allerton.2017.8262781
- 发表时间:2017-06
- 期刊:
- 影响因子:0
- 作者:E. Y. Hamedani;N. Aybat
- 通讯作者:E. Y. Hamedani;N. Aybat
A primal-dual method for conic constrained distributed optimization problems
- DOI:
- 发表时间:2016-07
- 期刊:
- 影响因子:0
- 作者:N. Aybat;E. Y. Hamedani
- 通讯作者:N. Aybat;E. Y. Hamedani
Distributed primal-dual method for multi-agent sharing problem with conic constraints
- DOI:10.1109/acssc.2016.7869152
- 发表时间:2016-11
- 期刊:
- 影响因子:0
- 作者:N. Aybat;E. Y. Hamedani
- 通讯作者:N. Aybat;E. Y. Hamedani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Uday Shanbhag其他文献
Uday Shanbhag的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Uday Shanbhag', 18)}}的其他基金
6th INFORMS Simulation Society Research Workshop; University Park, Pennsylvania; June 22-24, 2020
第六届INFORMS模拟学会研究研讨会;
- 批准号:
1939336 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Nash Equilibrium Problems under Uncertainty
合作研究:不确定性下的纳什均衡问题
- 批准号:
1538193 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: Commitment, Expansion, and Pricing in Uncertain Power Markets: Discrete Hierarchical Models and Scalable Algorithms
合作研究:不确定电力市场中的承诺、扩展和定价:离散层次模型和可扩展算法
- 批准号:
1408366 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Stochastic and Robust Variational Inequality Problems: Analysis, Computation and Applications to Power Markets
职业:随机和鲁棒变分不等式问题:分析、计算及其在电力市场中的应用
- 批准号:
1246887 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Stochastic and Robust Variational Inequality Problems: Analysis, Computation and Applications to Power Markets
职业:随机和鲁棒变分不等式问题:分析、计算及其在电力市场中的应用
- 批准号:
1151138 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Addressing Competition, Dynamics and Uncertainty in Optimization Problems: Theory, Algorithms, Applications and Grid-Computing Extensions
解决优化问题中的竞争、动态和不确定性:理论、算法、应用和网格计算扩展
- 批准号:
0728863 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
CMR parametric mappingを用いた急性大動脈解離の新規進展予測方法
使用 CMR 参数映射预测急性主动脉夹层进展的新方法
- 批准号:
24K19039 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Acoustic parametric modeling of laryngeal voice quality
喉部语音质量的声学参数化建模
- 批准号:
24K15013 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PET Parametric imagingを用いた糖尿病の臓器糖代謝変化の検討
使用 PET 参数成像检查糖尿病器官葡萄糖代谢变化
- 批准号:
24K18840 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
- 批准号:
2311249 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHINE: Observational and Theoretical Studies of the Parametric Decay Instability in the Lower Solar Atmosphere
合作研究:SHINE:太阳低层大气参数衰变不稳定性的观测和理论研究
- 批准号:
2229101 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Development of Parametric Estimation Based on Variational Divergence
基于变分散度的参数估计的发展
- 批准号:
23K16849 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geostatistical Software for Non-Parametric Geostatistical Modeling of Uncertainty
用于不确定性非参数地统计建模的地统计软件
- 批准号:
10697081 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
A shape-constrained approach for non-parametric variance estimation for Markov Chains
马尔可夫链非参数方差估计的形状约束方法
- 批准号:
2311141 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant