CAREER: Stochastic and Robust Variational Inequality Problems: Analysis, Computation and Applications to Power Markets

职业:随机和鲁棒变分不等式问题:分析、计算及其在电力市场中的应用

基本信息

  • 批准号:
    1246887
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-05-16 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

The research objective of this Faculty Early Career Development (CAREER) project is to develop an analytical and algorithmic framework for addressing variational inequality (VI) problems under uncertainty. Variational inequality problems can accommodate an expansive range of problems, including optimization problems, Nash games and equilibrium problems. Yet, there is limited understanding of how to incorporate uncertainty in such problems. The proposed research intends to fill this gap by considering two extensions: (1) stochastic variational inequality (SVI) problems, which generalize VIs by replacing the mapping with its expected-value counterpart; and (2) robust variational inequality (RVI) problems, where robust solutions to VIs are obtained by parameterizing uncertainty in the feasible solution set and the mapping. In the context of each problem, the proposed research will be aggregated around two thrusts: (i) analysis and (ii) computation. As part of (i), tractable integration-free characterization statements will be developed, including those pertaining to the existence, uniqueness and stability of the associated solutions. Additionally, extensions accommodating nonconvexity will also be investigated. In the context of (ii), the proposed research will investigate the development of adaptive step-size stochastic approximation schemes implementable over possibly evolving networks, as well as globally convergent and scalable decomposition schemes.If successful, this project will lead to new and enhanced tools for the design and operation of networked systems, complicated by uncertainty, nonlinearity, nonsmoothness and competition, as arising in transportation, telecommunications and energy sectors. More specifically, this research will lead to robust and reliable power markets, effected through ongoing interactions with the independent system operator in New England (ISO-NE). The project incorporates a comprehensive education plan aggregated around high-school discovery courses, undergraduate research projects and graduate-level seminars and will be accompanied by efforts toward increasing diversity through student advising and mentoring.
这个教师早期职业发展(CAREER)项目的研究目标是开发一个分析和算法框架,用于解决不确定性下的变分不等式(VI)问题。变分不等式问题可以容纳广泛的问题,包括优化问题,纳什博弈和均衡问题。 然而,人们对如何将不确定性纳入此类问题的理解有限。所提出的研究旨在通过考虑两个扩展来填补这一空白:(1)随机变分不等式(SVI)问题,通过将映射替换为其期望值对应物来推广维斯;(2)鲁棒变分不等式(RVI)问题,通过参数化可行解集和映射中的不确定性来获得维斯的鲁棒解。在每个问题的背景下,拟议的研究将围绕两个重点进行:(i)分析和(ii)计算。作为(i)的一部分,将开发易于处理的免积分特征陈述,包括与相关解的存在性、唯一性和稳定性有关的特征陈述。此外,扩展容纳非凸性也将被调查。 在(ii)的背景下,拟议的研究将调查可在可能演变的网络上实现的自适应步长随机逼近方案的发展,以及全局收敛和可扩展的分解方案。如果成功,该项目将导致新的和增强的工具,用于网络系统的设计和操作,复杂的不确定性,非线性,非平滑性和竞争,如运输,电信和能源部门。更具体地说,这项研究将导致强大和可靠的电力市场,通过持续的互动与独立的系统运营商在新英格兰(ISO-NE)的影响。该项目包括一个综合教育计划,围绕高中发现课程,本科生研究项目和研究生级别的研讨会,并将通过学生咨询和指导来增加多样性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Uday Shanbhag其他文献

Uday Shanbhag的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Uday Shanbhag', 18)}}的其他基金

6th INFORMS Simulation Society Research Workshop; University Park, Pennsylvania; June 22-24, 2020
第六届INFORMS模拟学会研究研讨会;
  • 批准号:
    1939336
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Nash Equilibrium Problems under Uncertainty
合作研究:不确定性下的纳什均衡问题
  • 批准号:
    1538193
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Commitment, Expansion, and Pricing in Uncertain Power Markets: Discrete Hierarchical Models and Scalable Algorithms
合作研究:不确定电力市场中的承诺、扩展和定价:离散层次模型和可扩展算法
  • 批准号:
    1408366
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Resolving Parametric Misspecification: Joint Schemes for Computation and Learning
解决参数错误指定:计算和学习的联合方案
  • 批准号:
    1400217
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Stochastic and Robust Variational Inequality Problems: Analysis, Computation and Applications to Power Markets
职业:随机和鲁棒变分不等式问题:分析、计算及其在电力市场中的应用
  • 批准号:
    1151138
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Addressing Competition, Dynamics and Uncertainty in Optimization Problems: Theory, Algorithms, Applications and Grid-Computing Extensions
解决优化问题中的竞争、动态和不确定性:理论、算法、应用和网格计算扩展
  • 批准号:
    0728863
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

DMS/NIGMS 1: Multilevel stochastic orthogonal subspace transformations for robust machine learning with applications to biomedical data and Alzheimer's disease subtyping
DMS/NIGMS 1:多级随机正交子空间变换,用于稳健的机器学习,应用于生物医学数据和阿尔茨海默病亚型分析
  • 批准号:
    2347698
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Hierarchical Robust Stochastic Control for a Flexible and Sustainable Power Supply
职业:用于灵活和可持续电源的分层鲁棒随机控制
  • 批准号:
    2236843
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
NSF-BSF: Real-Time Robust Estimation and Stochastic Control for Dynamic Systems with Additive Heavy-Tailed Uncertainties
NSF-BSF:具有加性重尾不确定性的动态系统的实时鲁棒估计和随机控制
  • 批准号:
    2317583
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
  • 批准号:
    535321-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Adaptable and Robust Multi-Robot Decision Making through Generalized Sequential Stochastic Task Assignment
通过广义顺序随机任务分配进行适应性强的鲁棒多机器人决策
  • 批准号:
    2103817
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
  • 批准号:
    535321-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
  • 批准号:
    535321-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Generalization of Uncertainty Models in Stochastic Optimal Control and Its Application to Robust Trajectory Design
随机最优控制中不确定性模型的推广及其在鲁棒轨迹设计中的应用
  • 批准号:
    19K15214
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
  • 批准号:
    535321-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Stochastic and Robust Optimization Approaches for Financial and Operations Engineering
财务和运营工程的随机鲁棒优化方法
  • 批准号:
    RGPIN-2014-04535
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了