CHS: Medium: Collaborative Research: Immediate Feedback to Support Learning American Sign Language through Multisensory Recognition
CHS:媒介:协作研究:通过多感官识别支持学习美国手语的即时反馈
基本信息
- 批准号:1400906
- 负责人:
- 金额:$ 53.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2014-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
American Sign Language (ASL) is a primary means of communication for 500,000 people in the United States and a distinct language from English, conveyed through hands, facial expressions, and body movements. Studies indicate that deaf children of deaf parents read better than deaf children of hearing parents, mainly due to better communication when both children and parents are deaf. However, more than 80% of children who are deaf or hard of hearing are born to hearing parents. It is challenging for parents, teachers, and other people in the life of a deaf child to learn ASL rapidly enough to support the visual language acquisition of the child. Technology that can automatically recognize aspects of ASL signing and provide instant feedback to these students of ASL would give them a time-flexible way to practice and improve their signing skills. The goal of this project, which involves an interdisciplinary team of researchers at three colleges within the City University of New York (CUNY) with expertise in computer vision, human-computer interaction, and Deaf and Hard of Hearing education, is to discover the most effective underlying technologies, user-interface design, and pedagogical use for an interactive tool to provide such immediate, automatic feedback for students of ASL.Most prior work on ASL recognition has focused on identifying a small set of simple signs performed, but current technology is not sufficiently accurate on continuous signing of sentences with an unrestricted vocabulary. The PIs will develop technologies to fundamentally advance ASL partial recognition, that is to identify linguistic/performance attributes of ASL without necessarily identifying the entire sequence of signs, and automatically determine if a performance is fluent or contains errors. The research will include five thrusts: (1) based on ASL linguistics and pedagogy, to identify a set of observable attributes indicating ASL fluency; (2) to discover new technologies for automatic detection of the ASL fluency attributes through fusion of multimodality (facial expression, hand gesture, and body pose) and multisensory information (RGB and Depth videos); (3) to collect and annotate a dataset of RGBD videos of ASL, performed at varied levels of fluency, by students and native signers; (4) to develop an interactive ASL learning tool that provides ASL students immediate feedback about whether their signing is fluent or not; and (5) to evaluate the robustness of the new algorithms and the effectiveness of the ASL learning tool, including its educational benefits. The work will lead to advances in computer vision technologies for human behavior perception, to new understanding of user-interface design with ASL video, and to a revolutionary and cost-effective educational tool to assist ASL learners achieve fluency, using recognition technologies that are robust and accurate in the near-term. Project outcomes will include a dataset of videos at varied fluency levels, which will be valuable for future ASL linguists or instructors, students learning ASL, and computer vision researchers.
美国手语(ASL)是美国50万人的主要交流方式,也是一种有别于英语的语言,通过手、面部表情和身体动作来传达。研究表明,聋人父母的聋儿比聋人父母的聋儿阅读更好,这主要是因为当孩子和父母都是聋人时,沟通更好。然而,80%以上的聋哑或重听儿童是听力正常的父母所生。对于失聪儿童的父母、老师和生活中的其他人来说,足够快地学习ASL以支持孩子的视觉语言习得是具有挑战性的。能够自动识别美国手语签名的各个方面并向这些美国手语学生提供即时反馈的技术,将为他们提供一种灵活的时间方式来练习和提高他们的签名技能。该项目涉及纽约市立大学(CUNY)内三所学院的研究人员组成的跨学科团队,他们拥有计算机视觉、人机交互以及聋人和重听教育方面的专业知识,其目标是发现最有效的基础技术、用户界面设计和交互工具的教学使用,为ASL学生提供这种即时、自动的反馈。大多数先前关于ASL识别的工作集中于识别一小部分执行的简单手势,但目前的技术在用不受限制的词汇连续签署句子方面还不够准确。PIS将开发从根本上推进ASL部分识别的技术,即识别ASL的语言/性能属性,而不必识别整个手势序列,并自动确定表演是否流畅或包含错误。这项研究将包括五个方面:(1)基于ASL语言学和教育学,确定一组反映ASL流利性的可观察属性;(2)通过融合多模式(面部表情、手势和身体姿势)和多感官信息(RGB和深度视频),发现自动检测ASL流利性属性的新技术;(3)收集和注释由学生和本族语签名者在不同流利度下进行的ASL RGBD视频集;(4)开发一个交互式ASL学习工具,为ASL学生提供关于其手语是否流利的即时反馈;以及(5)评估新算法的稳健性和ASL学习工具的有效性,包括其教育效益。这项工作将导致用于人类行为感知的计算机视觉技术的进步,通过ASL视频对用户界面设计的新理解,以及一种革命性的、具有成本效益的教育工具,以帮助ASL学习者实现流利,使用在短期内强大和准确的识别技术。项目成果将包括不同流利程度的视频数据集,这对未来的ASL语言学家或教师、学习ASL的学生和计算机视觉研究人员将是有价值的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matt Huenerfauth其他文献
Sign Language in the Interface
界面中的手语
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Matt Huenerfauth;Vicki L. Hanson - 通讯作者:
Vicki L. Hanson
Evaluation of American Sign Language Generation by Native ASL Signers
对母语 ASL 手语者生成美国手语的评价
- DOI:
10.1145/1361203.1361206 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Matt Huenerfauth;Liming Zhao;Erdan Gu;J. Allbeck - 通讯作者:
J. Allbeck
Effect of Displaying Human Videos During an Evaluation Study of American Sign Language Animation
美国手语动画评价研究中展示真人视频的效果
- DOI:
10.1145/2517038 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Hernisa Kacorri;Pengfei Lu;Matt Huenerfauth - 通讯作者:
Matt Huenerfauth
American Sign Language Generation: Multimodal NLG with Multiple Linguistic Channels
- DOI:
10.3115/1628960.1628968 - 发表时间:
2005-06 - 期刊:
- 影响因子:0
- 作者:
Matt Huenerfauth - 通讯作者:
Matt Huenerfauth
Evaluation of Language Feedback Methods for Student Videos of American Sign Language
美国手语学生视频语言反馈方法评价
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
Matt Huenerfauth;Elaine Gale;Brian Penly;Sree Pillutla;Mackenzie Willard;D. Hariharan - 通讯作者:
D. Hariharan
Matt Huenerfauth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matt Huenerfauth', 18)}}的其他基金
Collaborative Research: HCC: Medium: Linguistically-Driven Sign Recognition from Continuous Signing for American Sign Language (ASL)
合作研究:HCC:媒介:美国手语 (ASL) 连续手语中语言驱动的手语识别
- 批准号:
2212303 - 财政年份:2022
- 资助金额:
$ 53.8万 - 项目类别:
Standard Grant
CHS: Medium: Critical Factors for Automatic Speech Recognition in Supporting Small Group Communication Between People who are Deaf or Hard of Hearing and Hearing Colleagues
CHS:中:自动语音识别支持聋哑人或听力障碍人士与听力正常同事之间小组交流的关键因素
- 批准号:
1954284 - 财政年份:2020
- 资助金额:
$ 53.8万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Scalable Integration of Data-Driven and Model-Based Methods for Large Vocabulary Sign Recognition and Search
CHS:中:协作研究:用于大词汇量符号识别和搜索的数据驱动和基于模型的方法的可扩展集成
- 批准号:
1763569 - 财政年份:2018
- 资助金额:
$ 53.8万 - 项目类别:
Standard Grant
Collaborative Research: Automatic Text-Simplification and Reading-Assistance to Support Self-Directed Learning by Deaf and Hard-of-Hearing Computing Workers
协作研究:自动文本简化和阅读辅助,支持聋哑和听力障碍计算工作者的自主学习
- 批准号:
1822747 - 财政年份:2018
- 资助金额:
$ 53.8万 - 项目类别:
Standard Grant
CRII: CHS: Augmented Fabrication for Non-Expert Users of Digital Fabrication Systems
CRII:CHS:数字制造系统非专家用户的增强制造
- 批准号:
1464377 - 财政年份:2015
- 资助金额:
$ 53.8万 - 项目类别:
Continuing Grant
CCE STEM: Ethical Inclusion of People with Disabilities through Undergraduate Computing Education
CCE STEM:通过本科计算机教育对残疾人进行道德包容
- 批准号:
1540396 - 财政年份:2015
- 资助金额:
$ 53.8万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Immediate Feedback to Support Learning American Sign Language through Multisensory Recognition
CHS:媒介:协作研究:通过多感官识别支持学习美国手语的即时反馈
- 批准号:
1462280 - 财政年份:2014
- 资助金额:
$ 53.8万 - 项目类别:
Standard Grant
HCC: Medium: Collaborative Research: Generating Accurate, Understandable Sign Language Animations Based on Analysis of Human Signing
HCC:媒介:协作研究:根据人类手语分析生成准确、可理解的手语动画
- 批准号:
1506786 - 财政年份:2014
- 资助金额:
$ 53.8万 - 项目类别:
Continuing Grant
HCC: Medium: Collaborative Research: Generating Accurate, Understandable Sign Language Animations Based on Analysis of Human Signing
HCC:媒介:协作研究:根据人类手语分析生成准确、可理解的手语动画
- 批准号:
1065009 - 财政年份:2011
- 资助金额:
$ 53.8万 - 项目类别:
Continuing Grant
Doctoral Consortium for ASSETS 2010
2010 年 ASSETS 博士联盟
- 批准号:
1035382 - 财政年份:2010
- 资助金额:
$ 53.8万 - 项目类别:
Standard Grant
相似海外基金
CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
- 批准号:
2343187 - 财政年份:2023
- 资助金额:
$ 53.8万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: Empirically Validated Perceptual Tasks for Data Visualization
CHS:媒介:协作研究:数据可视化的经验验证感知任务
- 批准号:
2236644 - 财政年份:2022
- 资助金额:
$ 53.8万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Regional Experiments for the Future of Work in America
CHS:媒介:合作研究:美国未来工作的区域实验
- 批准号:
2243330 - 财政年份:2021
- 资助金额:
$ 53.8万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: From Hobby to Socioeconomic Driver: Innovation Pathways to Professional Making in Asia and the American Midwest
CHS:媒介:协作研究:从爱好到社会经济驱动力:亚洲和美国中西部专业制造的创新之路
- 批准号:
2224258 - 财政年份:2021
- 资助金额:
$ 53.8万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: Discovery and Exploration of Design Trade-Offs
CHS:媒介:协作研究:设计权衡的发现和探索
- 批准号:
1954028 - 财政年份:2020
- 资助金额:
$ 53.8万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: Computer-Aided Design and Fabrication for General-Purpose Knit Manufacturing
CHS:媒介:协作研究:通用针织制造的计算机辅助设计和制造
- 批准号:
1955444 - 财政年份:2020
- 资助金额:
$ 53.8万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Teachable Activity Trackers for Older Adults
CHS:媒介:协作研究:针对老年人的可教学活动追踪器
- 批准号:
1955590 - 财政年份:2020
- 资助金额:
$ 53.8万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Code demography: Addressing information needs at scale for programming interface users and designers
CHS:媒介:协作研究:代码人口统计:大规模解决编程接口用户和设计者的信息需求
- 批准号:
1955699 - 财政年份:2020
- 资助金额:
$ 53.8万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Reearch: Bio-behavioral data analytics to enable personalized training of veterans for the future workforce
CHS:中:协作研究:生物行为数据分析,为未来的劳动力提供退伍军人的个性化培训
- 批准号:
1955721 - 财政年份:2020
- 资助金额:
$ 53.8万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Fabric-Embedded Dynamic Sensing for Adaptive Exoskeleton Assistance
CHS:媒介:协作研究:用于自适应外骨骼辅助的织物嵌入式动态传感
- 批准号:
1955979 - 财政年份:2020
- 资助金额:
$ 53.8万 - 项目类别:
Standard Grant