CHS: Medium: Collaborative Reearch: Bio-behavioral data analytics to enable personalized training of veterans for the future workforce

CHS:中:协作研究:生物行为数据分析,为未来的劳动力提供退伍军人的个性化培训

基本信息

  • 批准号:
    1955721
  • 负责人:
  • 金额:
    $ 10.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

This project promotes fair and ethical treatment of veterans in the future job landscape by providing the empirical knowledge needed to remove implicit bias and misconceptions against veterans and prepare veterans for obtaining and maintaining competitive positions in the future workforce. Despite their strong work ethic and dedication, many veterans in the U.S still face major barriers to participating in the civilian workforce. After separation from duty, service members often participate in a week-long transition assistance program that, at best, can be described as a convenient “one-size-fits-all” solution. Research studying the limitations of the veteran population in entering this dynamically changing job market is scarce and does not provide a full understanding of the challenges faced by the veteran population as well as their train of thought during the time of the job interview. This project gathers empirical evidence to understand veterans’ common feelings, thoughts, and potential weaknesses in social effectiveness skills during the civilian job interviews. The project further provides a preliminary assistive technology enabled by artificial intelligence for promoting veterans’ interview skills in a tailored and inclusive manner, ultimately preparing them for the future workforce and broadening their participation in fields where they are traditionally underrepresented, such as computing. In addition to interview training, through effective partnerships with industry, this work creates educational materials for promoting unexplored strengths of the veteran population, such as commitment, reliability, and sense of duty, to the potential employers, thereby changing the job hiring culture and providing veterans with more opportunities in the future job landscape.This project explores the above goals through a collaboration between computational and behavioral sciences for acquiring new insights into veterans’ experiences during civilian interviews and designing novel technologies for supporting veterans in this task. The research work will be carried out with three technical aims. The first aim is on data collection through focus group discussions and real-life interviews of veterans with industry representatives to identify challenging encounters during the interview. Data include behavioral reactions, physiological reactivity, and subjective assessments of both the interviewer and interviewee, which are examined in association with the interview setting and are further triangulated. The second aim will explore quantifiable measures of interviewees’ moment-to-moment stress based on their vocalizations, visual expressions, and physiological reactivity. These quantifiable measures are employed for the preliminary design of training interventions that can assist veterans on coping with stress during the job interview training. The third aim will examine the interviewee’s ability to engage with the interviewer. In particular, the researchers will develop new methods in natural language processing and affective computing for detecting overly formal conversational language specific to the military, as well as degradation in social aspects of the interaction from acoustic and visual cues.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目通过提供消除对退伍军人的隐性偏见和误解所需的经验知识,促进退伍军人在未来就业环境中的公平和道德待遇,并为退伍军人在未来劳动力中获得和保持竞争地位做好准备。尽管他们有很强的职业道德和奉献精神,但许多美国退伍军人在参加文职工作方面仍然面临重大障碍。离职后,服役人员通常会参加为期一周的过渡援助计划,这充其量可以说是一个方便的“一刀切”的解决方案。关于退伍军人进入这个动态变化的就业市场的局限性的研究很少,并且没有充分了解退伍军人面临的挑战以及他们在求职面试时的思路。本项目收集实证资料,了解退伍军人在文职工作面试中的共同感受、想法和社会效能技能的潜在弱点。该项目进一步提供了一种由人工智能支持的初步辅助技术,以量身定制和包容的方式提高退伍军人的面试技能,最终为他们未来的劳动力做好准备,并扩大他们在传统上代表性不足的领域的参与,如计算机。除了面试培训外,通过与行业的有效合作,本工作还制作了教育材料,向潜在雇主宣传退伍军人尚未开发的优势,如承诺、可靠性和责任感,从而改变工作招聘文化,为退伍军人在未来的工作环境中提供更多机会。本项目通过计算科学和行为科学的合作来探索上述目标,以获取退伍军人在平民访谈中的经历的新见解,并设计支持退伍军人完成这项任务的新技术。这项研究工作将以三个技术目标进行。第一个目标是通过焦点小组讨论和退伍军人与行业代表的真实访谈来收集数据,以确定访谈中遇到的挑战。数据包括行为反应、生理反应和访谈者和被访谈者的主观评估,这些数据与访谈环境相关,并进一步进行三角测量。第二个目标是根据受访者的发声、视觉表达和生理反应,探索他们当下压力的量化测量方法。采用这些可量化的测量方法,初步设计培训干预措施,帮助退伍军人应对面试培训中的压力。第三个目标是考察受访者与面试官互动的能力。特别是,研究人员将开发自然语言处理和情感计算的新方法,用于检测特定于军事的过于正式的会话语言,以及来自声音和视觉线索的交互的社会方面的退化。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ani Nenkova其他文献

A Tableau Method for Graded Intersections of Modalities: A Case for Concept Languages

Ani Nenkova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ani Nenkova', 18)}}的其他基金

EAGER: Predicting Domain-level Reading Comprehension Difficulty to Support Adult Learning
EAGER:预测领域级阅读理解难度以支持成人学习
  • 批准号:
    1748771
  • 财政年份:
    2017
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Standard Grant
NAACL-HLT 2012 Student Workshop
NAACL-HLT 2012 学生研讨会
  • 批准号:
    1220521
  • 财政年份:
    2012
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Standard Grant
CI-P: Collaborative Research: Summarizing Opinion and Speaker Attitude in Speech
CI-P:协作研究:总结观点和演讲者在演讲中的态度
  • 批准号:
    1059257
  • 财政年份:
    2011
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Standard Grant
CAREER: Capturing Content and Linguistic Quality in Automatic Extractive and Abstractive Summarization
职业:在自动提取和抽象摘要中捕获内容和语言质量
  • 批准号:
    0953445
  • 财政年份:
    2010
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Continuing Grant
RI-Medium: Collaborative Research : Corpus-based Studies of Lexical, Acoustic, And Discourse Entrainment in Spoken Dialogue
RI-Medium:协作研究:基于语料库的口语对话中的词汇、声学和话语夹带研究
  • 批准号:
    0803159
  • 财政年份:
    2008
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Standard Grant

相似海外基金

CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
  • 批准号:
    2343187
  • 财政年份:
    2023
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Continuing Grant
CHS: Medium: Collaborative Research: Empirically Validated Perceptual Tasks for Data Visualization
CHS:媒介:协作研究:数据可视化的经验验证感知任务
  • 批准号:
    2236644
  • 财政年份:
    2022
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: Regional Experiments for the Future of Work in America
CHS:媒介:合作研究:美国未来工作的区域实验
  • 批准号:
    2243330
  • 财政年份:
    2021
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Continuing Grant
CHS: Medium: Collaborative Research: From Hobby to Socioeconomic Driver: Innovation Pathways to Professional Making in Asia and the American Midwest
CHS:媒介:协作研究:从爱好到社会经济驱动力:亚洲和美国中西部专业制造的创新之路
  • 批准号:
    2224258
  • 财政年份:
    2021
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Continuing Grant
CHS: Medium: Collaborative Research: Computer-Aided Design and Fabrication for General-Purpose Knit Manufacturing
CHS:媒介:协作研究:通用针织制造的计算机辅助设计和制造
  • 批准号:
    1955444
  • 财政年份:
    2020
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: Teachable Activity Trackers for Older Adults
CHS:媒介:协作研究:针对老年人的可教学活动追踪器
  • 批准号:
    1955590
  • 财政年份:
    2020
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: Code demography: Addressing information needs at scale for programming interface users and designers
CHS:媒介:协作研究:代码人口统计:大规模解决编程接口用户和设计者的信息需求
  • 批准号:
    1955699
  • 财政年份:
    2020
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: Fabric-Embedded Dynamic Sensing for Adaptive Exoskeleton Assistance
CHS:媒介:协作研究:用于自适应外骨骼辅助的织物嵌入式动态传感
  • 批准号:
    1955979
  • 财政年份:
    2020
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: Computer-Aided Design and Fabrication for General-Purpose Knit Manufacturing
CHS:媒介:协作研究:通用针织制造的计算机辅助设计和制造
  • 批准号:
    1956085
  • 财政年份:
    2020
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: Discovery and Exploration of Design Trade-Offs
CHS:媒介:协作研究:设计权衡的发现和探索
  • 批准号:
    1954028
  • 财政年份:
    2020
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了