RUI: Calculation of the Positronium Hyperfine Interval

RUI:正电子超精细间隔的计算

基本信息

  • 批准号:
    1404268
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

Positronium is the bound state of the electron and its antiparticle, the positron. As such, it forms an "exotic atom", similar in many ways to the traditional simple atoms such as hydrogen and helium, but different because of its unique composition and because of its tendency to annihilate, transforming into pure electromagnetic energy in the form of high-energy photons. Many properties of positronium, such as energy level differences and lifetimes, are accessible to high-precision experiments. Positronium properties can also be calculated theoretically to high precision. Consequently, positronium is an ideal system for testing the limits of electromagnetic bound state physics. The positronium hyperfine splitting--the interval between the spin-1 and spin-0 variants of the lowest energy state--is of prime interest because there is a long-standing difference (of about four times the experimental uncertainty) between theory and experiment for this splitting. The current proposal is to calculate the positronium hyperfine interval to a higher level. When complete, the result of this work will help to resolve or sharpen the positronium hyperfine discrepancy. This theoretical work is timely because two experimental groups, based at the University of California, Riverside and at the University of Tokyo, are developing improved experimental measurements of the hyperfine interval. The combination of improved experimental results and higher precision theory will work together to give bound-state Quantum Electrodynamics (QED) one of its most stringent tests to date. An important aspect of this project will be the training of undergraduate student collaborators in the techniques and processes of scientific investigation in this field. The overall project involves a number of distinct parts that will make ideal projects for small teams of students. The students will cooperate in all aspects of the work including the development of calculational techniques and tools, the calculations themselves, presentation at scientific meetings, and publication. Positronium properties will be calculated theoretically to high precision using the methods of bound-state Quantum Electrodynamics (QED) because strong and weak interaction effects are negligible. The positronium hyperfine interval will be calculated to a higher level of precision than heretofore by completing all three-loop corrections to the hyperfine interval. This will require an application of effective field theory methods, specifically Non-Relativistic QED (NRQED), at the three-loop order. When complete, the result of this work will help to resolve or sharpen the positronium hyperfine discrepancy.
正电子是电子及其反粒子--正电子--的束缚状态。因此,它形成了一种“奇异原子”,在许多方面与氢和氦等传统的简单原子相似,但由于其独特的组成和湮灭的倾向而不同,它以高能光子的形式转化为纯粹的电磁能量。正电子素的许多性质,如能级差异和寿命,都可以通过高精度的实验获得。正电子性质的理论计算也可以达到很高的精度。因此,正电子是测试电磁束缚态物理极限的理想系统。正电子的超精细分裂--最低能态的自旋-1和自旋-0之间的间隔--是最令人感兴趣的,因为这种分裂的理论和实验之间存在着长期的差异(大约是实验不确定性的四倍)。目前的建议是将正电子的超精细间隔计算到更高的水平。完成后,这项工作的结果将有助于解决或尖锐的正电子超精细差异。这项理论工作是及时的,因为加州大学河滨分校和东京大学的两个实验小组正在改进超精细间隔的实验测量。改进的实验结果和更高精度的理论相结合,将使束缚态量子电动力学(QED)成为迄今为止最严格的测试之一。这个项目的一个重要方面将是培训本科生合作者在这一领域的科学调查的技术和过程。整个项目包括许多不同的部分,这些部分将成为学生小组的理想项目。学生们将在工作的各个方面进行合作,包括计算技术和工具的开发、计算本身、在科学会议上的陈述和出版。由于强相互作用和弱相互作用的影响可以忽略不计,因此可以用束缚态量子电动力学(QED)的方法从理论上高精度地计算正电子素的性质。通过完成对超精细间隔的所有三环校正,正电子超精细间隔将被计算到比以前更高的精度水平。这将需要有效场论方法的应用,特别是非相对论QED(NRQED),在三环序。完成后,这项工作的结果将有助于解决或尖锐的正电子超精细差异。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Adkins其他文献

Teacher Performance Pay: The Perceptions Of Certified School-based Pe
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gregory Adkins
  • 通讯作者:
    Gregory Adkins

Gregory Adkins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Adkins', 18)}}的其他基金

RUI: Calculation of Higher Order Corrections to Positronium Energy Levels
RUI:正电子能级高阶修正的计算
  • 批准号:
    2308792
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
RUI: Calculation of Higher Order Corrections to Positronium Energy Levels
RUI:正电子能级高阶修正的计算
  • 批准号:
    2011762
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
RUI: Calculation of Higher Order Corrections to Positronium Energy Levels
RUI:正电子能级高阶修正的计算
  • 批准号:
    1707489
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Higher Order Corrections to Positronium Energy Levels and Decay Rates
对正电子能级和衰变率的高阶修正
  • 批准号:
    0070819
  • 财政年份:
    2000
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Acquisition of a High Performance Workstation for the Calculation of the Properties of Positronium and Other Bound Systems
购买高性能工作站用于计算正电子和其他束缚​​系统的性质
  • 批准号:
    9711991
  • 财政年份:
    1997
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
RUI: Order Alpha Squared Corrections to Positronium Energy Levels and Decay Rates
RUI:对正电子能级和衰变率进行阿尔法平方修正
  • 批准号:
    9722074
  • 财政年份:
    1997
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
RUI: Order Alpha Squared Corrections to Positronium Energy Levels and Decay Rates
RUI:对正电子能级和衰变率进行阿尔法平方修正
  • 批准号:
    9408215
  • 财政年份:
    1994
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Order Alpha Squared Corrections to Positronium Energy Levels and Decay Rates
对正电子能级和衰变率进行阿尔法平方修正
  • 批准号:
    9008449
  • 财政年份:
    1990
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Order Alpha Squared Corrections to Energy Levels and Decay Rates of Positronium (Physics)
对正电子能级和衰变率的阿尔法平方修正(物理)
  • 批准号:
    8704324
  • 财政年份:
    1987
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Rho and Omega Mesons in a Skyrme Model of the Nucleon (Physics)
核子 Skyrme 模型中的 Rho 和 Omega 介子(物理学)
  • 批准号:
    8608590
  • 财政年份:
    1986
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似海外基金

An autonomous machine learning-based molecular dynamics method that utilizes first-principles atomic energy calculation
一种基于自主机器学习的分子动力学方法,利用第一原理原子能计算
  • 批准号:
    23H03415
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Understanding moisture-induced adhesion weakening via first-principles protonation calculation
通过第一原理质子化计算了解水分引起的粘附减弱
  • 批准号:
    23H01697
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of calculation method for Magnetophonics and its application to magnetic materials
磁声学计算方法的发展及其在磁性材料中的应用
  • 批准号:
    23KJ2165
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A new nuclear matter calculation method based on realistic nuclear forces and the effect of many-body terms on the equation of state
基于现实核力和多体项对状态方程影响的新核物质计算方法
  • 批准号:
    23K03397
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Calculation and the Verification of the maximum electric power of Microbial Fuel Cells by Minimizing the Internal Resistance Using the Mathematical Model
微生物燃料电池内阻最小化最大电功率的数学模型计算与验证
  • 批准号:
    23K11483
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applying Innovative Artificial Intelligence Approaches to a Large Sleep Physiologic Biorepository to Integrate Sleep Disruption in Cardiovascular Risk Calculation
将创新的人工智能方法应用于大型睡眠生理生物库,将睡眠中断纳入心血管风险计算
  • 批准号:
    10731500
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
RUI: Calculation of Higher Order Corrections to Positronium Energy Levels
RUI:正电子能级高阶修正的计算
  • 批准号:
    2308792
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Study of the B-meson wavefunction based on QCD and its applications to precision calculation of rare B decays
基于QCD的B介子波函数研究及其在稀有B衰变精密计算中的应用
  • 批准号:
    23K03419
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
What causes misconduct: Does inter-corporate competition skew the calculation of benefits and costs?
导致不当行为的原因:公司间竞争是否会扭曲收益和成本的计算?
  • 批准号:
    23K01362
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Relativistic Electronic Structure Approaches for the Calculation of Structural, Mechanical and Spectroscopic Properties of Infinite Periodic Systems
开发用于计算无限周期系统的结构、力学和光谱特性的相对论电子结构方法
  • 批准号:
    545643-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了