Computational Studies of Multiorbital Model Hamiltonians for Iron-Based Superconductors in Quasi One-Dimensional Geometries.

准一维几何铁基超导体多轨道模型哈密顿量的计算研究。

基本信息

  • 批准号:
    1404375
  • 负责人:
  • 金额:
    $ 43.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARYThis award supports theoretical and computational research and education focused on studies of a family of iron-based materials most of which become superconductors at low temperatures. Superconductors conduct electricity without any power loss below a certain critical temperature. However, this critical temperature for traditional superconductors discovered in the early 20th century is very low (near absolute zero). If the critical temperature for superconductivity could be raised to near room temperature, a plethora of novel technological advances would instantly be possible. A milestone in the quest to raise the critical temperature of superconductors was achieved in the late 1980s with the discovery of a family of copper-based ceramic-like magnetic compounds (the so-called cuprates) with critical temperatures that are halfway between absolute zero and room temperature. While the mechanism that produces superconductivity in traditional superconductors is fairly well understood, achieving a fundamental understanding of the mechanism that leads to superconductivity in the cuprates has been a significant challenge. A new piece of the puzzle of high temperature superconductivity was added by the discovery of iron-based superconducting materials in 2008. The iron-based family of materials is very rich and their properties fall somewhere between those of traditional superconductors and the cuprates. Understanding the way in which their crystal lattice, spatial arrangement of electrons, and magnetic degrees of freedom interact to bring out the interesting properties of the iron-based materials will shed light on the mechanism that leads to high temperature superconductivity.To achieve this goal new theoretical frameworks have to be established in order to study systems where electrons with different spatial arrangements strongly interact with each other. The goal of the present project is to develop models that capture the essence of the iron-based materials and study them with powerful computational approaches and analytical techniques in order to (i) explain the emerging experimental data, and (ii) offer guidance to experimentalists in their quest to synthetize materials with potential technologically relevant properties. Another important aspect of this activity is the training of PhD students who will learn how to use computation to solve problems in condensed matter physics and materials science. A close connection with young Latin American scientists, both residing in the USA and abroad, will be developed. This is expected to contribute to an increase in the number of young Hispanic researchers with an interest in physics, materials, and computational science. TECHNICAL SUMMARYThis award supports theoretical and computational research and education focused on model Hamiltonian studies of complex oxide materials that require a multi-orbital Hubbard formalism for accurate description of their electronic properties. The recent discovery of the iron-based high critical temperature superconductors has established a new area of research where ideas based on electronic mechanisms for superconductivity can be tested. Compared with the superconducting copper oxide materials, in the iron pnictides and chalcogenides several Fe 3d orbitals must be considered simultaneously for a proper theoretical description of these compounds. Based on this motivation, computational studies of model Hamiltonians for families of complex materials that require a multi-orbital Hubbard formalism to describe their electronic properties will be performed. The results of this effort will not only elucidate the properties of iron-based superconductors, but they will also guide the study of other materials that require a multi-orbital formalism. The focus of the project will be on quasi-one-dimensional materials because there are real materials with these characteristics, such as BaFe2Se3 (two-leg ladders) and TlFeSe2 (chains), and because the computational calculations are considerably more accurate in one dimensional geometries than in two. The many body calculations will be performed by a combination of Density Matrix Renormalization Group and Exact Diagonalization techniques, both addressing static and dynamical quantities, but they will also be supplemented by Hartree-Fock approximations in two dimensions. The physical aspects that will be addressed include (i) construction of phase diagrams with varying the Hubbard repulsion, Hund coupling, and electronic density with special focus on the orbital-selective Mott transition; (ii) calculation of dynamical responses in order to compare theory against angle-resolved photoemission and neutron scattering experiments; (iii) investigation of pair formation and their dominant channels, particularly in two-leg ladders; and (iv) studies of possible self-organization tendencies in the electronic sector.The investigations will address a variety of topics of current interest in Condensed Matter Physics. The study of the phase diagrams of multi-orbital model Hamiltonians for the iron-based superconductors will allow the PIs to pursue conceptually novel areas of research involving exotic states with magnetic, orbital, charge, and pairing ordering tendencies that will lead to an improved view of complex materials that require a multi-orbital formalism for their modeling. Another important aspect of this project is the training of PhD students who will learn how to use computation to solve problems in condensed matter physics and materials science. A close connection with young Latin American scientists, both residing in the USA and abroad, will be developed. This is expected to contribute to an increase in the number of young Hispanic researchers with an interest in physics, materials, and computational science.
非技术总结该奖项支持理论和计算研究和教育,重点是铁基材料家族的研究,其中大多数在低温下成为超导体。超导体在某一临界温度以下导电而没有任何功率损失。然而,对于世纪早期发现的传统超导体来说,这个临界温度非常低(接近绝对零度)。 如果超导的临界温度可以提高到接近室温,那么大量的新技术进步将立即成为可能。 20世纪80年代末,随着一系列铜基陶瓷状磁性化合物(所谓的铜酸盐)的发现,在提高超导体临界温度方面取得了里程碑式的成就,其临界温度介于绝对零度和室温之间。虽然在传统超导体中产生超导性的机制已经相当好地理解,但对导致铜酸盐中超导性的机制的基本理解一直是一个重大挑战。2008年,铁基超导材料的发现为高温超导性的难题增添了新的一页。 铁基材料家族非常丰富,其性质介于传统超导体和铜酸盐之间。 了解它们的晶格、电子的空间排列和磁自由度相互作用的方式,揭示铁基材料的有趣性质,将有助于揭示高温超导性的机制。为了实现这一目标,必须建立新的理论框架来研究具有不同空间排列的电子相互作用强烈的系统。本项目的目标是开发捕获铁基材料本质的模型,并使用强大的计算方法和分析技术对其进行研究,以便(i)解释新兴的实验数据,(ii)为实验人员提供指导,以寻求合成具有潜在技术相关特性的材料。这项活动的另一个重要方面是培养博士生,他们将学习如何使用计算来解决凝聚态物理和材料科学中的问题。将与居住在美国和国外的拉丁美洲青年科学家建立密切联系。预计这将有助于增加对物理,材料和计算科学感兴趣的年轻西班牙裔研究人员的数量。该奖项支持理论和计算研究和教育,重点是复杂氧化物材料的模型哈密顿研究,这些材料需要多轨道哈伯德形式主义来准确描述其电子特性。 最近铁基高临界温度超导体的发现建立了一个新的研究领域,可以测试基于超导电子机制的想法。与铜氧化物超导材料相比,在铁磷属化物和硫属化物中,要对这些化合物进行正确的理论描述,必须同时考虑几个Fe 3d轨道。基于这一动机,计算研究的模型哈密顿量的家庭复杂的材料,需要一个多轨道哈伯德形式主义来描述他们的电子特性将被执行。这项工作的结果不仅将阐明铁基超导体的性质,而且还将指导其他需要多轨道形式的材料的研究。该项目的重点将是准一维材料,因为有真实的材料具有这些特性,如BaFe 2Se 3(双腿梯)和TlFeSe 2(链),因为计算计算在一维几何形状中比在二维几何形状中精确得多。多体计算将通过密度矩阵重整化群和精确对角化技术的结合来进行,既解决静态和动态量,但它们也将由二维的Hartree-Fock近似来补充。将涉及的物理方面包括:(i)构建具有不同的Hubbard排斥、Hund耦合和电子密度的相图,特别关注轨道选择性Mott跃迁;(ii)计算动力学响应,以便将理论与角分辨光电发射和中子散射实验进行比较;(iii)研究成对的形成及其主要通道,特别是在两条腿的梯子上;(四)研究可能的自我-在电子部门的组织趋势。调查将解决凝聚态物理学当前感兴趣的各种主题。铁基超导体的多轨道模型哈密顿相图的研究将使PI能够追求概念上新颖的研究领域,涉及具有磁性,轨道,电荷和配对排序趋势的奇异状态,这将导致复杂材料的改进视图,需要多轨道形式主义进行建模。 该项目的另一个重要方面是培养博士生,他们将学习如何使用计算来解决凝聚态物理和材料科学中的问题。将与居住在美国和国外的拉丁美洲青年科学家建立密切联系。预计这将有助于增加对物理,材料和计算科学感兴趣的年轻西班牙裔研究人员的数量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adriana Moreo其他文献

Hole pockets in the doped 2D Hubbard model
  • DOI:
    10.1007/bf00752299
  • 发表时间:
    1995-05-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Adriana Moreo;Daniel Duffy
  • 通讯作者:
    Daniel Duffy
Shadow bands in models of correlated electrons

Adriana Moreo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adriana Moreo', 18)}}的其他基金

Computational Studies of Model Hamiltonians for Pnictides and Multiferroic Manganites
磷族元素和多铁性锰酸盐模型哈密顿量的计算研究
  • 批准号:
    1104386
  • 财政年份:
    2011
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant
ITR: Correlated Electrons in Complex Oxides and Nanoscopic Systems
ITR:复杂氧化物和纳米系统中的相关电子
  • 批准号:
    0706020
  • 财政年份:
    2007
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant
Correlation Effects and Transport in Nanostructured Materials: An Argentina-Brazil-USA Collaboration
纳米结构材料中的相关效应和传输:阿根廷-巴西-美国合作
  • 批准号:
    0454504
  • 财政年份:
    2004
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant
ITR: Study of Complex Nanoclustered States using Novel Efficient Algorithms
ITR:使用新型高效算法研究复杂的纳米团簇态
  • 批准号:
    0443144
  • 财政年份:
    2004
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
ITR: Study of Complex Nanoclustered States using Novel Efficient Algorithms
ITR:使用新型高效算法研究复杂的纳米团簇态
  • 批准号:
    0312333
  • 财政年份:
    2003
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
Correlation Effects and Transport in Nanostructured Materials: An Argentina-Brazil-USA Collaboration
纳米结构材料中的相关效应和传输:阿根廷-巴西-美国合作
  • 批准号:
    0303348
  • 财政年份:
    2003
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Development of B cell functional studies on primary antibody deficiencies
一抗缺陷 B 细胞功能研究的进展
  • 批准号:
    502607
  • 财政年份:
    2024
  • 资助金额:
    $ 43.5万
  • 项目类别:
Experimental and numerical studies on internal erosion of granular soils
颗粒土内部侵蚀的实验与数值研究
  • 批准号:
    DE240101106
  • 财政年份:
    2024
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Discovery Early Career Researcher Award
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
  • 批准号:
    BB/Y006232/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Research Grant
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
  • 批准号:
    BB/Y006151/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Research Grant
REU Site: Field and laboratory studies of coastal marine processes at the Shannon Point Marine Center
REU 站点:香农角海洋中心沿海海洋过程的现场和实验室研究
  • 批准号:
    2349136
  • 财政年份:
    2024
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
  • 批准号:
    2349338
  • 财政年份:
    2024
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
  • 批准号:
    2339353
  • 财政年份:
    2024
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant
Studies in Categorical Algebra
分类代数研究
  • 批准号:
    2348833
  • 财政年份:
    2024
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant
Maximizing the Impact of Engineering Laboratory Studies to Transform Undergraduate Engineering Curriculum and Advance Student Outcomes
最大限度地发挥工程实验室研究的影响,改变本科工程课程并提高学生的成绩
  • 批准号:
    2337194
  • 财政年份:
    2024
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
Femtosecond X-Ray Diffraction Studies of Crystalline Matter Deforming under Extreme Loading
极端载荷下晶体物质变形的飞秒 X 射线衍射研究
  • 批准号:
    EP/X031624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了