Interactions With and Between Rydberg Atoms
里德伯原子之间的相互作用
基本信息
- 批准号:1404419
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Typical atoms and molecules in a gas are compact and nearly impervious to all but the strongest electric and magnetic fields that can be applied in a laboratory, and they hardly interact with each other except for the rare cases when they pass within tiny distances of each other. Using simple lasers, one of the electrons in an atom or molecule can acquire so much energy that it is only barely bound to the atom or molecule. An atom with such a weakly bound electron is called a Rydberg atom after Johannes Rydberg who gave a mathematical description of the allowed energies. Because the electron is weakly attached to the atom or molecule, its properties can be controlled using modest fields that are easily accessible. Also, the interaction between two or more Rydberg atoms is millions of times larger than is usual which gives interesting atom-atom effects even for a dilute gas.The main technical goal of this project is to calculate the properties of a single Rydberg atom in static electric or magnetic fields or in laser fields and to calculate the properties of many interacting Rydberg atoms. Within the past decade, there have been an increasing number of experimental groups investigating different arrangements of Rydberg atoms or molecules and fields. One of the general goals of this project is to provide understanding of the experimental results and/or to propose new arrangements worth studying. The reason for investigating a Rydberg atom in different fields is that there is nearly full external control of this quantum system so that it is possible to learn what properties of the interaction control how energy and/or particles move within a closed system. There is a similar reason for studying many interacting Rydberg atoms: the flow of energy through a purely quantum is a fundamental question and is worth studying in different situations. Lastly, there have been several proposals to use Rydberg atoms as components in quantum computers and/or as non-linear optical devices. Thus, studies which use state-of-the-art computational techniques could aid in the understanding of the feasibility of these proposals.This project will investigate several situations where the exaggerated electronic properties of Rydberg atoms are the main common feature. Calculations for systems that consist of a single Rydberg atom exposed to strong fields as well as many Rydberg atoms that interact through their large electric dipole moments will be performed. For all of the systems, the group will use either fully quantum or a mixture of quantum and classical methods in the calculations. The main long term goal of this project is to develop theoretical and computational tools that allow the quantitative description of complex quantum phenomena. The calculations proposed involve highly excited states where the many nodes of the wave function allow for complex phenomena or involve many body systems where the correlations between particles lead to nontrivial dynamics. At a basic level, this goal is a fundamental goal of nearly all atomic theory proposals. Thus, the lessons learned in these studies could be of wide interest. Also, understanding these systems could allow for experimental control of complex states and many body systems.There are a couple of projects that investigate how a single Rydberg atom behaves when exposed to strong fields. The first situation is when an atom is exposed to the structured potential that arises in a bottle-beam trap; when the nucleus is off-center, this potential has little symmetry with respect to the nucleus so that nearly all states are mixed together. The second situation is to understand the role that quantum friction (in the form of spontaneous emission) plays in a driven quantum system; this system is interesting because the classical dynamics leads to the oscillator locking to the drive. The classical motion does not decay out of the O-point and, thus, can remain forever with high energy even though 'friction' is present. The projects involving two or more interacting Rydberg atoms focus on separate aspects of this system but invoke similar computational tools and theoretical ideas. One project is to study the kick an atom receives due to Rydberg-Rydberg interactions, especially for blockaded systems. This kick arises due to the finite interaction energy between the atoms and could have implications for quantum computation schemes. Another project is to study Anderson localization in a Rydberg gas: the randomness in the placement of atoms translates into a randomness in the hopping amplitude of an excitation. A goal is to understand how the 1/R3 dependence in the hopping amplitude affects the basic properties of Anderson localization. Another project is to understand the role that near-field versus far-field dipole-dipole interactions play within a Rydberg gas. By systematically varying the types of states participating in the dipole-dipole interaction, one can tune the system from predominantly near-field (states with large principle quantum number) to far-field (states with small principle quantum number). Lastly, calculations of the interaction between two Rydberg atoms with large electric dipole moments aligned along an external electric field and how it affects the relative motion of the atoms will be performed. This will investigate whether it is possible to vary the direction of the electric field in a rapid, time dependent manner so that the atoms form a dynamically stable molecule.
气体中的典型原子和分子是紧凑的,除了实验室中可以施加的最强电场和磁场外,几乎不受任何影响,除了极少数情况下,它们彼此之间的距离很小。使用简单的激光,原子或分子中的一个电子可以获得如此多的能量,以至于它几乎不与原子或分子结合。具有这种弱束缚电子的原子被称为里德伯原子,以约翰内斯·里德伯的名字命名,他给出了允许能量的数学描述。由于电子与原子或分子的连接很弱,因此可以使用容易获得的适度场来控制其性质。此外,两个或多个里德伯原子之间的相互作用比通常的大数百万倍,即使在稀气体中也会产生有趣的原子-原子效应。本项目的主要技术目标是计算单个里德伯原子在静电场或磁场或激光场中的性质,以及计算多个相互作用里德伯原子的性质。在过去的十年里,有越来越多的实验小组研究里德伯原子或分子和场的不同排列。该项目的总体目标之一是提供对实验结果的理解和/或提出值得研究的新安排。在不同领域研究里德伯原子的原因是,这个量子系统几乎完全由外部控制,因此可以了解相互作用的哪些性质控制能量和/或粒子在封闭系统中的运动。研究许多相互作用的里德伯原子也有类似的原因:能量通过纯量子的流动是一个基本问题,值得在不同的情况下进行研究。最后,有几个建议使用里德伯原子作为量子计算机和/或非线性光学器件的组件。因此,使用最先进的计算技术的研究可以帮助理解这些建议的可行性。本项目将调查几种情况下,夸张的里德伯原子的电子性质是主要的共同特征。计算系统,包括一个单一的里德伯原子暴露在强场,以及许多里德伯原子,通过他们的大电偶极矩相互作用将被执行。对于所有系统,该小组将在计算中使用完全量子方法或量子和经典方法的混合方法。该项目的主要长期目标是开发理论和计算工具,以定量描述复杂的量子现象。所提出的计算涉及高激发态,其中波函数的许多节点允许复杂的现象或涉及许多体系统,其中粒子之间的相关性导致非平凡的动力学。在基本层面上,这个目标是几乎所有原子理论提案的基本目标。因此,这些研究中吸取的教训可能会引起广泛兴趣。此外,了解这些系统可以允许复杂状态和许多身体系统的实验控制。有几个项目研究单个里德堡原子在暴露于强场时的行为。第一种情况是当一个原子暴露在结构势中时,这种势产生于一个瓶束阱中;当原子核偏离中心时,这种势相对于原子核几乎没有对称性,因此几乎所有的态都混合在一起。第二种情况是理解量子摩擦(以自发辐射的形式)在受驱动量子系统中的作用;这个系统很有趣,因为经典动力学导致振荡器锁定到驱动器。经典运动不会衰减出O点,因此,即使存在“摩擦”,也可以永远保持高能量。 涉及两个或多个相互作用的里德伯原子的项目集中在这个系统的不同方面,但调用类似的计算工具和理论思想。其中一个项目是研究原子由于里德伯-里德伯相互作用而受到的反冲,特别是对于封闭系统。这种反冲是由于原子之间有限的相互作用能而产生的,可能对量子计算方案产生影响。另一个项目是研究里德堡气体中的安德森定域:原子位置的随机性转化为激发的跳跃幅度的随机性。一个目标是了解如何1/R3的跳跃幅度的依赖性影响的基本性质的安德森本地化。另一个项目是了解近场与远场偶极-偶极相互作用在里德伯气体中的作用。通过系统地改变参与偶极-偶极相互作用的状态的类型,可以将系统从主要的近场(具有大的主量子数的状态)调谐到远场(具有小的主量子数的状态)。最后,计算了两个具有大电偶极矩的里德伯原子沿沿着外电场排列的相互作用以及它如何影响原子的相对运动。这将研究是否有可能以快速、随时间变化的方式改变电场的方向,从而使原子形成动态稳定的分子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francis Robicheaux其他文献
Collective dipole-dipole interactions in an atomic array
原子阵列中的集体偶极子相互作用
- DOI:
10.1103/physreva.94.013847 - 发表时间:
2016 - 期刊:
- 影响因子:2.9
- 作者:
R. T. Sutherland;Francis Robicheaux - 通讯作者:
Francis Robicheaux
Using cold atoms to measure neutrino mass
使用冷原子测量中微子质量
- DOI:
10.1088/1367-2630/12/4/043022 - 发表时间:
2009 - 期刊:
- 影响因子:3.3
- 作者:
M. Jerkins;J. R. Klein;Julia Majors;Francis Robicheaux;M. Raizen - 通讯作者:
M. Raizen
Regularities in calculated photoionization cross sections for the halogens.
计算出的卤素光电离截面的规律。
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Francis Robicheaux;Chris H. Greene - 通讯作者:
Chris H. Greene
Simulation of motion and radiative decay of Rydberg hydrogen atoms in electric and magnetic fields
里德伯氢原子在电场和磁场中的运动和辐射衰变模拟
- DOI:
10.1088/0953-4075/44/14/145003 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Michael A. Henry;Francis Robicheaux - 通讯作者:
Francis Robicheaux
Classical Fractals and Quantum Chaos in Ultracold Dipolar Collisions.
超冷偶极碰撞中的经典分形和量子混沌。
- DOI:
10.1103/physrevlett.118.154101 - 发表时间:
2017 - 期刊:
- 影响因子:8.6
- 作者:
B. Yang;J. Pérez;Francis Robicheaux - 通讯作者:
Francis Robicheaux
Francis Robicheaux的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francis Robicheaux', 18)}}的其他基金
Collective Atom Interaction with Photons
原子与光子的集体相互作用
- 批准号:
2109987 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Precision Tests of Physics Beyond the Standard Model with Antihydrogen
合作研究:超越标准模型的反氢物理精度测试
- 批准号:
1806380 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Many Facets of Laser-Atom and Dipole-Dipole Interactions
激光-原子和偶极-偶极相互作用的多个方面
- 批准号:
1804026 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping
合作研究:反氢生成和捕获的等离子体物理的实验和理论研究
- 批准号:
1500470 - 财政年份:2015
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping
合作研究:反氢生成和捕获的等离子体物理的实验和理论研究
- 批准号:
1358332 - 财政年份:2013
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping
合作研究:反氢生成和捕获的等离子体物理的实验和理论研究
- 批准号:
1202331 - 财政年份:2012
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Few Body Dynamics of Atomic and Molecular Systems
原子和分子系统的少体动力学
- 批准号:
0969530 - 财政年份:2010
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: Experimental and theoretical study of the plasma physics of antihydrogen generation and trapping
合作研究:反氢生成和捕获的等离子体物理的实验和理论研究
- 批准号:
0903811 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Few Body Dynamics of Atomic and Molecular Systems
原子和分子系统的少体动力学
- 批准号:
0653301 - 财政年份:2007
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Few Body Dynamics of Atomic and Molecular Systems
原子和分子系统的少体动力学
- 批准号:
0355039 - 财政年份:2004
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
相似海外基金
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
Translations between Type Theories
类型理论之间的翻译
- 批准号:
EP/Z000602/1 - 财政年份:2025
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
Thwarted Identity: The Missing Link Between Psychopathology and Prejudice
受挫的身份:精神病理学与偏见之间缺失的联系
- 批准号:
DP240100108 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Projects
A Cultural Plutocracy? Transnational families and the consumption of luxury goods in Britain and in France between 1870 and 1930
文化富豪统治?
- 批准号:
2882198 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
A MISSING LINK between continental shelves and the deep sea: Addressing the overlooked role of land-detached submarine canyons
大陆架和深海之间缺失的联系:解决与陆地无关的海底峡谷被忽视的作用
- 批准号:
NE/X014975/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
- 批准号:
EP/Y00244X/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
- 批准号:
2337830 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
CAREER: Closing the Loop between Learning and Communication for Assistive Robot Arms
职业:关闭辅助机器人手臂的学习和交流之间的循环
- 批准号:
2337884 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333102 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant