Measurement of the Gravitostatic Aharonov-Bohn Effect

静重力阿哈罗诺夫-博恩效应的测量

基本信息

  • 批准号:
    1404566
  • 负责人:
  • 金额:
    $ 48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

Of the fundamental forces, gravity is probably the one most familiar in everyday life, yet its physics is the least well understood. For one, it does not fit into the standard model of particle physics, which is based on quantum mechanics. In addition, the action of gravity in quantum mechanics has been relatively elusive to experimental measurement. One of the most important challenges in physics is thus to find new ways to investigate how gravity affects quantum systems. The group will give a demonstration of the so-called Aharonov-Bohm effect (AB effect) for gravity. In classical physics, the interaction between two objects can be described equivalently based on forces or on potential energies. Aharonov and Bohm, however, pointed out that in quantum mechanics, two objects can influence each other even if there are zero forces between them. This has been verified experimentally for electromagnetic forces and potentials. The group will construct a specialized apparatus to investigate whether there is an analogous Aharonov-Bohm effect for gravity. This will demonstrate that gravity affects a quantum system even when it does not cause any classical force; that knowledge of the classical gravitational force acting locally on a particle is not sufficient to predict the particle's quantum-mechanical behavior; and help develop a new way of measuring Newton's gravitational constant G. Paraphrasing R. P. Feynman, for a long time it was believed that potentials were not "real", since they could be replaced by force fields in the description of any observable phenomenon then known. However, the AB effect has established that potentials are real, and forces are slowly disappearing from the modern expression of physical law. The group is collaborating with industrial partners to apply the techniques developed in this work in the production of advanced inertial sensors for improved navigation and positioning.The experiment will be based on laser-cooled cesium atoms held in an optical lattice, inside a special arrangement of two spherical masses that produce a "W"-shaped gravitational potential. The atoms will be at extrema of the gravitational potential, so that there will be no net force between the spherical masses and the atoms. Nevertheless, the masses should cause a relative phase shift of the atomic matter waves. The group will experimentally demonstrate the distinguishing features of the AB effect, such as nonlocality and nondispersiveness. The optical lattice will be a standing wave inside a Fabry-Perot cavity, to control the optical wave-fronts and provide laser intensity enhancement.
在基本力中,引力可能是我们在日常生活中最熟悉的一种,但它的物理性质却最不为人所知。首先,它不符合基于量子力学的粒子物理学标准模型。此外,量子力学中引力的作用对于实验测量来说相对难以捉摸。因此,物理学中最重要的挑战之一是找到新的方法来研究引力如何影响量子系统。该小组将演示所谓的Aharonov-Bohm效应(AB效应)。在经典物理学中,两个物体之间的相互作用可以基于力或势能来等效描述。然而,Aharonov和Bohm指出,在量子力学中,两个物体可以相互影响,即使它们之间没有力。这已经在电磁力和电磁势的实验中得到了验证。该小组将建造一个专门的装置来研究是否存在类似的Aharonov-Bohm引力效应。这将证明引力影响量子系统,即使它不引起任何经典力;经典引力局部作用于粒子的知识不足以预测粒子的量子力学行为;并帮助开发测量牛顿引力常数G的新方法。 帕拉辛河费曼,很长一段时间以来,人们认为,潜力是不是“真实的”,因为他们可以取代力场在描述任何可观察到的现象,然后知道。然而,AB效应已经确定了势是真实的,力正慢慢地从物理定律的现代表达中消失。 该小组正在与工业伙伴合作,将这项工作中开发的技术应用于生产先进的惯性传感器,以改善导航和定位。该实验将基于激光冷却的铯原子,这些铯原子被保持在光学晶格中,在两个球形质量的特殊排列中,产生“W”形引力势。原子将处于引力势的极值,因此在球形质量和原子之间将没有净力。然而,质量应该引起原子物质波的相对相移。该小组将通过实验证明AB效应的显着特征,如非定域性和非分散性。光学晶格将是法布里-珀罗腔内的驻波,以控制光学波前并提供激光强度增强。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Holger Mueller其他文献

Overcoming resolution-loss mechanisms in laser phase plate cryo-electron microscopy
  • DOI:
    10.1016/j.bpj.2022.11.1775
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Jeremy J. Axelrod;Petar N. Petrov;Jonathan Remis;Robert M. Glaeser;Holger Mueller
  • 通讯作者:
    Holger Mueller
Optimization of microgrids short term operation based on an enhanced genetic algorithm
基于增强遗传算法的微电网短期运行优化
  • DOI:
    10.1109/ptc.2015.7232801
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohsen Nemati;Karima Bennimar;S. Tenbohlen;Liang Tao;Holger Mueller;M. Braun
  • 通讯作者:
    M. Braun
Label-free optical detection of cellular action potentials using electrochromic materials
  • DOI:
    10.1016/j.bpj.2022.11.2863
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Erica Liu;Yuecheng Zhou;Felix S. Alfonso;Yang Yang;Burhan Ahmed;Kenneth Nakasone;Victoria Xu;Holger Mueller;Bianxiao Cui
  • 通讯作者:
    Bianxiao Cui
The Assessment Gap: Racial Inequalities in Property Taxation *
评估差距:财产税中的种族不平等*
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carlos F. Avenancio;Troup Howard;Nathan Anderson;Abhay P. Aneja;Steve Cicala;Hilary Hoynes;Paulo Issler;Maris Jensen;Andrew Kahrl;Pat Kline;Ross Levine;Deborah Lucas;Ulrike Malmendier;Conrad Miller;Enrico Moretti;Adair Morse;Holger Mueller;Hoai;Christine A. Parlour;Sarah Resnick;Justin Ross;Rob Ross;Emmanuel Saez;Nick Sander;Allison Shertzer;Nancy Wallace;Randy Walsh;Danny Yagan;Gabriel Zucman
  • 通讯作者:
    Gabriel Zucman
High-resolution optical recording of bioelectric signals using electrochromic materials
  • DOI:
    10.1016/j.bpj.2022.11.2862
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Burhan Ahmed;Kenneth Nakasone;Dana Griffith;Yuecheng Zhou;Erica Liu;Felix S. Alfonso;Bianxiao Cui;Holger Mueller
  • 通讯作者:
    Holger Mueller

Holger Mueller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Holger Mueller', 18)}}的其他基金

PM: Cavity-based Atomic Gravimeter
PM:腔体原子重力计
  • 批准号:
    2208029
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Pinpointing with a Broad Beam: h/m and the Fine Structure Constant
用宽光束精确定位:h/m 和精细结构常数
  • 批准号:
    1806583
  • 财政年份:
    2018
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Cavity-based atom interferometry for testing gravity and dark-sector physic
用于测试重力和暗区物理的基于腔的原子干涉测量
  • 批准号:
    1708160
  • 财政年份:
    2017
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
CAREER: Atom Interferometry Experiments in Fundamental Physics
职业:基础物理中的原子干涉测量实验
  • 批准号:
    1056620
  • 财政年份:
    2011
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
MRI: Development of Zernike Phase Contrast For Biological Electron Microscopy
MRI:生物电子显微镜泽尼克相差的发展
  • 批准号:
    1040543
  • 财政年份:
    2010
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了