Understanding nanoscale characteristics of protein self-assembly on polymeric surfaces with multiscale chemical heterogeneity

了解具有多尺度化学异质性的聚合物表面上蛋白质自组装的纳米级特征

基本信息

  • 批准号:
    1404658
  • 负责人:
  • 金额:
    $ 40.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-15 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

Prof. Jong-in Hahm and her students in the Department of Chemistry at Georgetown University conducts research to advance understanding of the common but very complex phenomenon of protein adsorption onto polymer surfaces. The process of protein adsorption onto solid surfaces impacts essential everyday applications in food processing/packaging, health devices, diagnostic tools, and medical products. Specifically, Prof. Hahm's research team focuses on investigating the nature of protein-surface interactions at the nanoscale whose size regime is increasingly becoming crucial for the development of highly miniaturized protein detection and diagnostic devices. The multifaceted approach of this project aims to provide fundamental insights for protein-domain specific adsorption on nanoscale polymeric surfaces which, in turn, will be valuable in laying the foundation for guiding principles to create next generation protein arrays. Through this research, graduate, undergraduate, and local high school students learn the state-of-the-art techniques of optical imaging and materials characterization. Students also gain experience in conducting solid-state protein assays in a quantitative manner using newly developed polymer-based protein nanoarrays.In this project funded by the Macromolecular, Supramolecular, and Nanochemistry Program of the Chemistry Division, Prof. Hahm's research team elucidates both static and dynamic interaction preferences between individual proteins and polymeric domains at the single- and sub-biomolecule level. Sub-biomolecular resolution structural imaging of individual proteins is carried out by high-resolution atomic force microscopy. In addition, kinetic measurements of protein adsorption onto various size-scale polymeric surfaces are performed by surface plasmon resonance spectroscopy. This research aims to narrow the nanoscale-macroscale gap and promote our understanding of nanoscale protein adsorption through combined experimental and theoretical approaches.
乔治城大学化学系的Jong-in Hahm教授和她的学生进行研究,以促进对蛋白质在聚合物表面吸附这一常见但非常复杂的现象的理解。蛋白质在固体表面的吸附过程影响着食品加工/包装、保健设备、诊断工具和医疗产品中的基本日常应用。具体地说,哈姆教授的研究团队专注于在纳米尺度上研究蛋白质-表面相互作用的性质,纳米尺度的尺寸制度对开发高度微型化的蛋白质检测和诊断设备越来越关键。该项目的多方面方法旨在为蛋白质结构域在纳米级聚合物表面上的特定吸附提供基本见解,这反过来将为创建下一代蛋白质阵列的指导原则奠定基础。通过这项研究,研究生、本科生和当地的高中生学习最先进的光学成像和材料表征技术。学生还将获得使用新开发的基于聚合物的蛋白质纳米阵列以定量方式进行固态蛋白质分析的经验。在这个由化学系大分子、超分子和纳米化学计划资助的项目中,Hahm教授的研究团队在单个和亚生物分子水平上阐明了单个蛋白质和聚合物结构域之间的静态和动态相互作用偏好。单个蛋白质的亚生物分子分辨率结构成像是通过高分辨率原子力显微镜进行的。此外,还利用表面等离子体共振光谱对蛋白质在不同尺寸的聚合物表面上的吸附进行了动力学测量。本研究旨在通过实验和理论相结合的方法,缩小纳米尺度-宏观尺度的差距,促进我们对纳米尺度蛋白质吸附的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Angel de Dios其他文献

Angel de Dios的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Angel de Dios', 18)}}的其他基金

CAREER: NMR Chemical Shifts in Peptides
职业: NMR 肽中的化学位移
  • 批准号:
    9874424
  • 财政年份:
    1999
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Programming designer DNA nanostructures for blocking enveloped viral infection
编程设计 DNA 纳米结构以阻止包膜病毒感染
  • 批准号:
    10598739
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
Development of a sample preparation protocol for 3D kidney ultrastructural analysis and immunolabeling by light microscopy
开发用于 3D 肾脏超微结构分析和光学显微镜免疫标记的样品制备方案
  • 批准号:
    10760947
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
Revealing the Cell Wall Organization of Fungal Pathogens and Structural Responses to Antifungal Drugs Using Cellular Solid-State NMR
使用细胞固态核磁共振揭示真菌病原体的细胞壁组织和抗真菌药物的结构反应
  • 批准号:
    10566511
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
Fibrillar polymorphs in human brain tissue
人脑组织中的纤维多态性
  • 批准号:
    10733496
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
Targeting Fluid Stress-induced Chemoresistance in a 3D Carcinomatosis Perfusion Model Using Mechanism-based Photo-immunoconjugate Nanoparticles
使用基于机制的光免疫缀合物纳米颗粒在 3D 癌病灌注模型中靶向流体应激诱导的化疗耐药性
  • 批准号:
    10587481
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
Monitor single-cell dynamics using optically computed phase microscopy in correlation with fluorescence characterization of intracellular properties
使用光学计算相位显微镜监测单细胞动力学与细胞内特性的荧光表征相关
  • 批准号:
    10589414
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
Measuring and Modeling the Effects of Reticular Lamina Flexibility on Outer Hair Cell Bundle Phase and Cochlear Amplification
测量和模拟网状层灵活性对外毛细胞束相位和耳蜗放大的影响
  • 批准号:
    10676401
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
Multi-modality optical imaging of single-cell dynamics using supercontinuum light source
使用超连续谱光源的单细胞动力学多模态光学成像
  • 批准号:
    10798646
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
Retina-derived extracellular vesicles in diabetic retinopathy: their potential role in pathogenesis and therapy
糖尿病视网膜病变中视网膜来源的细胞外囊泡:它们在发病机制和治疗中的潜在作用
  • 批准号:
    10644819
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
Improving Fragment Based Drug Discovery and the Development of Tools for Chemical Biology through Nanoscale Encapsulation and NMR Spectroscopy
通过纳米级封装和核磁共振波谱改善基于片段的药物发现和化学生物学工具的开发
  • 批准号:
    10419416
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了