Application Characterization for Adaptive Computing Platform Determination for Computational and Data-Enabled Science and Engineering
计算和数据支持的科学与工程的自适应计算平台确定的应用表征
基本信息
- 批准号:1404981
- 负责人:
- 金额:$ 69.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-01 至 2016-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Traditional high performance computing clusters (HPCC) and Hadoop clusters are both important platforms in computational and data-enabled science and engineering (CDS&E). Hadoop MapReduce is typically effective in large-scale data analysis while traditional HPC is more commonly employed in computational problems (petabytes vs. petaflops). HPCC can include a shim layer that allows Hadoop MapReduce to access HPC storage (denoted by Hadoop+HPCC), local storage (denoted by Hadoop), and a combination of both (denoted by Hadoop/HPCC). This project aims to identify the characteristics of various CDS&E MapReduce computational tasks, and adaptively determine the best platform (Hadoop, Hadoop+HPCC and Hadoop/HPCC) for individual applications based on their characteristics, and also optimally arrange data placement between local storage and dedicated remote storage, given performance objectives and system cost metrics. Broader impacts include critical insights into the suitability of different computing platforms to different CDS&E applications, and a more advanced HPC system. Research results will be disseminated through technology transfer to industry partners, via publication in peer review journals, and in software releases. Results will also serve as catalyst for research in cyberinfrastructure, which serves the CDS&E fields. This project will provide thorough training of students and collaborative research opportunities for participating Clemson graduates, undergraduates, faculty, and K-12 students. Results will be integrated into courses taught by the PIs. The PIs will recruit new students, particularly those from underrepresented groups, to undertake the study of a STEM discipline.
传统的高性能计算簇(HPCC)和Hadoop群集既是计算和数据支持科学与工程(CDS&E)的重要平台。 Hadoop MapReduce通常在大规模数据分析中有效,而传统的HPC则更常用于计算问题(Petabytes vs. Petaflops)。 HPCC可以包括一个垫片,该层允许Hadoop MapReduce访问HPC存储(由Hadoop+HPCC表示),本地存储(由Hadoop表示)和两者的组合(由Hadoop/HPCC表示)。该项目旨在确定各种CDS&E MAPREDUCE计算任务的特征,并根据其特征自适应地确定最佳平台(Hadoop,Hadoop+HPCC和Hadoop/HPCC),以根据其特征来确定各个应用程序,并最佳地在本地存储和专用的远程存储之间安排数据放置,鉴于性能性能目标和系统成本量表。更广泛的影响包括对不同计算平台对不同CDS&E应用程序的适用性以及更先进的HPC系统的关键见解。研究结果将通过技术转移到行业合作伙伴,通过同行评审期刊和软件版本的出版物来传播。结果还将作为网络基础结构研究的催化剂,该结构为CDS&E领域提供服务。该项目将为参与Clemson的毕业生,本科生,教职员工和K-12学生提供彻底培训和协作研究机会。结果将集成到PIS教授的课程中。 PI将招募新学生,尤其是来自代表性不足的学生,以进行STEM学科的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haiying Shen其他文献
Impact of Memory DoS Attacks on Cloud Applications and Real-Time Detection Schemes
内存 DoS 攻击对云应用的影响和实时检测方案
- DOI:
10.1145/3404397.3404465 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Zhuozhao Li;Tanmoy Sen;Haiying Shen;M. Chuah - 通讯作者:
M. Chuah
IRM: Integrated File Replication and Consistency Maintenance in P2P Systems
- DOI:
10.1109/tpds.2009.43 - 发表时间:
2008-11 - 期刊:
- 影响因子:0
- 作者:
Haiying Shen - 通讯作者:
Haiying Shen
Surface-modified mesoporous nanofibers for microfluidic immunosensor with an ultra-sensitivity and high signal-to-noise ratio
用于具有超灵敏和高信噪比的微流控免疫传感器的表面修饰介孔纳米纤维
- DOI:
10.1016/j.bios.2020.112444 - 发表时间:
2020 - 期刊:
- 影响因子:12.6
- 作者:
Zulan Li;Ye Liu;Xing-Ming Chen;Hongyan Cao;Haiying Shen;Lei Mou;Xinli Deng;Xingyu Jiang;Yulong Cong - 通讯作者:
Yulong Cong
Analysis the cooperation strategies in mobile ad hoc networks
移动自组网协作策略分析
- DOI:
10.1109/mahss.2008.4660129 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Ze Li;Haiying Shen - 通讯作者:
Haiying Shen
SPread: Exploiting fractal social community For efficient multi-coPy routing in VDTNs
SPread:利用分形社交社区在 VDTN 中实现高效的多副本路由
- DOI:
10.1109/iccnc.2017.7876149 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Bo Wu;Kang;Haiying Shen - 通讯作者:
Haiying Shen
Haiying Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haiying Shen', 18)}}的其他基金
CICI:TCR: Enhancing Security and Privacy of Community Cyberinfrastructures for Collaborative Research
CICI:TCR:增强社区网络基础设施的安全性和隐私性以进行协作研究
- 批准号:
2319988 - 财政年份:2023
- 资助金额:
$ 69.98万 - 项目类别:
Standard Grant
Efficient Astronomical Data Processing Among Distributed Astronomical Radio Observatories
分布式天文射电观测站的高效天文数据处理
- 批准号:
2206522 - 财政年份:2022
- 资助金额:
$ 69.98万 - 项目类别:
Standard Grant
Organizing CSSI PI Meeting - Towards a National Cyberinfrastructure Ecosystem
举办CSSI PI会议——迈向国家网络基础设施生态系统
- 批准号:
2006409 - 财政年份:2020
- 资助金额:
$ 69.98万 - 项目类别:
Standard Grant
PFI-RP: A Smart Building for Enhancing Human Performance, Comfort and Health
PFI-RP:提高人类表现、舒适度和健康的智能建筑
- 批准号:
1827674 - 财政年份:2018
- 资助金额:
$ 69.98万 - 项目类别:
Standard Grant
CAREER: A New Efficient and Cooperative Large-Scale Distributed Data Sharing System
CAREER:新型高效协作的大规模分布式数据共享系统
- 批准号:
1733596 - 财政年份:2017
- 资助金额:
$ 69.98万 - 项目类别:
Continuing Grant
CIF21 DIBBs: PD: Building High-Availability Data Capabilities in Data-Centric Cyberinfrastructure
CIF21 DIBB:PD:在以数据为中心的网络基础设施中构建高可用性数据功能
- 批准号:
1724845 - 财政年份:2017
- 资助金额:
$ 69.98万 - 项目类别:
Standard Grant
Application Characterization for Adaptive Computing Platform Determination for Computational and Data-Enabled Science and Engineering
计算和数据支持的科学与工程的自适应计算平台确定的应用表征
- 批准号:
1661378 - 财政年份:2016
- 资助金额:
$ 69.98万 - 项目类别:
Standard Grant
EAGER: An Efficient and Effective Distributed Information System
EAGER:高效、有效的分布式信息系统
- 批准号:
1354123 - 财政年份:2013
- 资助金额:
$ 69.98万 - 项目类别:
Standard Grant
CAREER: A New Efficient and Cooperative Large-Scale Distributed Data Sharing System
CAREER:新型高效协作的大规模分布式数据共享系统
- 批准号:
1254006 - 财政年份:2013
- 资助金额:
$ 69.98万 - 项目类别:
Continuing Grant
CSR: EAGER: A Scalable and Efficient Resource Discovery System for Large-Scale Distributed Systems
CSR:EAGER:适用于大型分布式系统的可扩展且高效的资源发现系统
- 批准号:
1249603 - 财政年份:2012
- 资助金额:
$ 69.98万 - 项目类别:
Standard Grant
相似国自然基金
基于物理规律自适应表征的地震数据智能编码采集方法研究
- 批准号:42374222
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
高密度倒装芯片缺陷的自适应稀疏表征与深度因果迁移智能识别方法研究
- 批准号:52375099
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
复杂视觉模式的自适应表征学习方法
- 批准号:62376291
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
面向多模态视觉跟踪的鲁棒表征和自适应融合模型研究
- 批准号:62376004
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
大型复杂曲面机器人铣削稳定性的不确定性表征及工艺参数自适应调控
- 批准号:52305563
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
- 批准号:
24K07389 - 财政年份:2024
- 资助金额:
$ 69.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive characterization of the genetic factors and the host immune response associated to protection from clinical Plasmodium vivax malaria
与预防临床间日疟原虫疟疾相关的遗传因素和宿主免疫反应的综合特征
- 批准号:
10634775 - 财政年份:2023
- 资助金额:
$ 69.98万 - 项目类别:
Software for the complete characterization of antibody repertoires: from germline and mRNA sequence assembly to deep learning predictions of their protein structures and targets
用于完整表征抗体库的软件:从种系和 mRNA 序列组装到其蛋白质结构和靶标的深度学习预测
- 批准号:
10699546 - 财政年份:2023
- 资助金额:
$ 69.98万 - 项目类别:
Biochemical and functional characterization of a novel anti-inflammatory biogenic amine
新型抗炎生物胺的生化和功能表征
- 批准号:
10610183 - 财政年份:2023
- 资助金额:
$ 69.98万 - 项目类别:
Characterization and targeting of a novel pathway promoting Parkinson’s Disease
促进帕金森病的新途径的表征和靶向
- 批准号:
10855706 - 财政年份:2023
- 资助金额:
$ 69.98万 - 项目类别: