Nanofluid Rechargeable Flow Battery

纳米流体可充电液流电池

基本信息

  • 批准号:
    1405134
  • 负责人:
  • 金额:
    $ 31.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

A major limitation of electric vehicles is that for most battery designs recharging cells can take a few hours, resulting in range anxiety for consumers. An alternative possibility is to use a flow battery, where fresh electrolyte could be pumped in and spent electrolyte pumped out at a dedicated refueling station. Unfortunately, current flow battery chemistries do not have high enough volumetric energy density to be practical for transportation applications. The proposed project will investigate a new type of flow battery that has the potential to drastically increase the volumetric energy density relative to current flow battery systems. Unlike current flow batteries where the energy is stored in dissolved metal salts, the proposed system will store energy in solid nanoparticles. The system studied in this proposal has the potential to increase the energy density of flow batteries by a factor of greater than 5, making it possible to use these flow batteries in transportation applications. Such an energy density improvement could both enable flow batteries for electric vehicles and would make the time to recharge an electric vehicle battery comparable to the time it takes to fill a gas tank. This project will also involve the creation of a remote flow battery experiment, where anyone can perform an experiment on a flow battery system in the PI's lab by accessing a publicly available website.The goal of this project is to investigate the structure-property relationships of a flow battery where the electrolyte is comprised of a nanofluid with active electrode materials that are solid transition metal nanoparticles. The approach relies on synthesizing monodisperse, spherical electrode particles that will be used as the active materials in the nanofluid. These particles will be characterized electrochemically and rheologically in relation to application in a flow battery system. The researchers will also explore different designs of the electrode geometry that the nanofluid will come into contact with to optimize the energy and power delivered from the nanofluid. The system will result in a tradeoff between maximizing energy density and minimizing viscosity. The goal is to have high active material loading in the nanofluid while avoiding impractical operating viscosities and also maximizing collisions between the active material nanoparticles and the electrode. This project will potentially contribute to the fields of colloid stability in electrolyte solutions, battery electrode materials, and flow battery systems. This nanofluid system should be extendable to a variety of battery chemistries, which would open up a new field of research in the battery community. Implementing the nanofluid battery system would also result in new parallel fields of study, including thermal management of this unconventional energy storage system.
电动汽车的一个主要限制是,对于大多数电池设计,充电电池可能需要几个小时,导致消费者的里程焦虑。 另一种可能性是使用液流电池,其中新鲜的电解质可以在专用的加油站泵入,废电解质可以在专用的加油站泵出。 不幸的是,目前的液流电池化学物质不具有足够高的体积能量密度以实用于运输应用。 拟议的项目将研究一种新型的液流电池,该电池有可能相对于当前的液流电池系统大幅提高体积能量密度。 与目前的液流电池不同,能量储存在溶解的金属盐中,所提出的系统将能量储存在固体纳米颗粒中。 该提案中研究的系统有可能将液流电池的能量密度提高5倍以上,使这些液流电池有可能用于运输应用。 这种能量密度的提高既可以使液流电池用于电动车辆,又可以使电动车辆电池再充电的时间与填充油箱所需的时间相当。 该项目还将创建一个远程液流电池实验,任何人都可以通过访问公开网站在PI实验室的液流电池系统上进行实验。该项目的目标是研究液流电池的结构-性能关系,其中电解质由纳米流体和活性电极材料组成,活性电极材料是固体过渡金属纳米颗粒。 该方法依赖于合成单分散的球形电极颗粒,这些颗粒将用作纳米流体中的活性材料。 这些颗粒将在电化学和流变学上表征与在液流电池系统中的应用有关。研究人员还将探索纳米流体将接触的电极几何形状的不同设计,以优化从纳米流体传递的能量和功率。 该系统将在最大化能量密度和最小化粘度之间进行权衡。 目标是在纳米流体中具有高活性材料负载,同时避免不切实际的操作粘度,并且还使活性材料纳米颗粒与电极之间的碰撞最大化。 该项目将对电解质溶液中的胶体稳定性、电池电极材料和液流电池系统等领域做出潜在贡献。 这种纳米流体系统应该可以扩展到各种电池化学,这将为电池界开辟一个新的研究领域。 实施纳米流体电池系统还将导致新的并行研究领域,包括这种非常规储能系统的热管理。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electrochemical Evaluation of Suspensions of Lithium-Ion Battery Active Materials as an Indicator of Rate Capability
Role of coprecipitation and calcination of precursors on phase homogeneity and electrochemical properties of battery active materials
  • DOI:
    10.1016/j.powtec.2018.05.020
  • 发表时间:
    2018-07-15
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Dong, Hongxu;Wang, Anny;Koenig, Gary M., Jr.
  • 通讯作者:
    Koenig, Gary M., Jr.
Investigation of Polyanion Materials with Multiple Intercalation Cations: Na Ions in Na-Ion Full Cell
具有多个嵌入阳离子的聚阴离子材料的研究:钠离子全电池中的钠离子
  • DOI:
    10.1149/08010.0259ecst
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paharik, Ethan;Rudman, Kelly;Koenig, Gary
  • 通讯作者:
    Koenig, Gary
Electrochemical Characterization of Lithium-Ion Battery Cathode Materials with Aqueous Flowing Dispersions
  • DOI:
    10.1016/j.electacta.2017.09.031
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Zhaoxiang Qi;Hong Dong;Gary M. Koenig
  • 通讯作者:
    Zhaoxiang Qi;Hong Dong;Gary M. Koenig
Sintered electrode full cells for high energy density lithium-ion batteries
  • DOI:
    10.1007/s10800-018-1242-y
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Robinson, J. Pierce;Ruppert, John J.;Koenig, Gary M., Jr.
  • 通讯作者:
    Koenig, Gary M., Jr.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gary Koenig其他文献

Anti-interleukin-4 inhibits immunoglobulin E production in a murine model of atopic asthma.
抗白细胞介素 4 药物可抑制特应性哮喘小鼠模型中免疫球蛋白 E 的产生。
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Chang Yi Zhou;I. Crocker;Gary Koenig;F. Antonio Romero;Robert G. Townley
  • 通讯作者:
    Robert G. Townley
Impact of cell salvage on hematocrit and post-partum anemia in low hemorrhage risk elective cesarean delivery.
细胞挽救对低出血风险选择性剖宫产中血细胞比容和产后贫血的影响。
Smart Strategic Choices Enhance Success in Managing Under-Resourced Academic Psychiatry Departments
  • DOI:
    10.1007/s40596-024-01993-9
  • 发表时间:
    2024-06-19
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    David J. Peterson;Thomas Heinrich;Nathan Berken;Gary Koenig;Jon A. Lehrmann
  • 通讯作者:
    Jon A. Lehrmann

Gary Koenig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gary Koenig', 18)}}的其他基金

PFI-RP: Developing a New Large-Scale Battery Technology
PFI-RP:开发新型大规模电池技术
  • 批准号:
    1940915
  • 财政年份:
    2020
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Role of Directional Porosity in Transport and Mechanical Properties of Hierarchical Sintered Metal Oxide Electrodes
合作研究:了解定向孔隙率在分级烧结金属氧化物电极的传输和机械性能中的作用
  • 批准号:
    1825216
  • 财政年份:
    2019
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Standard Grant
PFI:AIR - TT: Advancement of Dispersed Particle Electrochemical Device for Analytical and Energy Storage Applications
PFI:AIR - TT:用于分析和储能应用的分散颗粒电化学装置的进展
  • 批准号:
    1700031
  • 财政年份:
    2017
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Standard Grant
CAREER: Particle and Electrode Engineering of High Voltage Lithium-Ion Cathodes
职业:高压锂离子阴极的颗粒和电极工程
  • 批准号:
    1652488
  • 财政年份:
    2017
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Standard Grant
I-Corps: Assessment of High Energy Density Flow Battery for Stationary Power Applications
I-Corps:用于固定电源应用的高能量密度液流电池评估
  • 批准号:
    1613830
  • 财政年份:
    2016
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Standard Grant

相似海外基金

Fire-retardant Solid State Electrolytes for Rechargeable Li-ion Batteries
用于可充电锂离子电池的阻燃固态电解质
  • 批准号:
    DP240102728
  • 财政年份:
    2024
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Discovery Projects
SBIR Phase II: Rechargeable Carbon-Oxygen Battery for Ultra-Low-Cost Renewable Energy Storage
SBIR第二阶段:用于超低成本可再生能源存储的可充电碳氧电池
  • 批准号:
    2222588
  • 财政年份:
    2023
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Cooperative Agreement
Creation and Application of The Next-Generation Rechargeable Battery Anode Materials Starting from Rutile-Type Composite Oxides
以金红石型复合氧化物为原料的下一代充电电池负极材料的制备及应用
  • 批准号:
    23H02065
  • 财政年份:
    2023
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The race to net zero necessitates the development of fast-charging and sustainable rechargeable batteries with long lifetimes and high capacity. One p
实现净零排放的竞赛需要开发具有长寿命和高容量的快速充电和可持续充电电池。
  • 批准号:
    2891660
  • 财政年份:
    2023
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Studentship
Solar rechargeable Zinc-Bromine Flow Batteries
太阳能可充电锌溴液流电池
  • 批准号:
    DP230100572
  • 财政年份:
    2023
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Discovery Projects
Development of Utrasmall Nanoparticles with Rigid Host Structures Toward Magnesium Rechargeable Battery Cathodes
开发具有刚性主体结构的超小纳米粒子用于镁可充电电池阴极
  • 批准号:
    23K13816
  • 财政年份:
    2023
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
B-DECENT: Breakthrough Anode-less Rechargeable Aqueous Zinc-ion Batteries
B-DECENT:突破性无阳极可充电水性锌离子电池
  • 批准号:
    EP/Y008707/1
  • 财政年份:
    2023
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Research Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
  • 批准号:
    2323118
  • 财政年份:
    2023
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
  • 批准号:
    2323119
  • 财政年份:
    2023
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
  • 批准号:
    2323117
  • 财政年份:
    2023
  • 资助金额:
    $ 31.66万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了