Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries

合作研究:DMREF:下一代可充电电池电解质的高通量筛选

基本信息

项目摘要

Rechargeable batteries have become one of the most popular energy storage devices for electric vehicles, electronics, and grid energy storage. Developing novel electrolytes for the next generation of rechargeable batteries require more understanding of transport properties, microstructures, and the impact of microstructure on transport property. In this project, the investigators will systematically vary the composition and concentration of the electrolytes to determine the optimum solution for advanced rechargeable batteries. The success of the proposed research will provide high throughput experimentation/characterization and machine learning platforms. Moreover, the integrated research and educational programs will broadly impact the university, secondary education, and the general public. The research results will be into the investigators' courses and be used to train undergraduate and graduate students in the interdisciplinary research areas. New educational outreach initiatives include having an Electrolyte for Energy Storage workshop for local high school students and teachers each fall to enhance the broader impact of this NSF project.The fundamental interactions in the electrolyte directly determine the solvation structures, kinetics, and battery performance of the bulk electrolytes. Understanding the complex interactions and their correlation with electrolyte performance is significant for exploring their working mechanisms and realizing the rational design of battery electrolytes. The novelty of this proposal lies in the use of advanced high-throughput characterization with the help of MD simulation and machine learning to determine the link between molecular interactions and the macroscopic properties of battery electrolytes. The proposal aims to (1) gain a good understanding of the solvation structure through multimodal characterization methods Raman and X-ray for high throughput experimentation/characterization. High-throughput X-ray scattering techniques (USAXS/SAXS/WAXS for APS) will be used to characterize solution organization as a function of ion composition, ion concentration, and temperature; (2) to correlate the structure-property relationship by studying transport properties through high-throughput computational screening studies. A computational platform will be developed to screen structure/property relationships by AIMD and MD; (3) A machine learning-based data analysis platform will be created to predict and identify battery properties by analyzing high-throughput structural and simulation data.This project is supported by the Division of Materials Research and the Chemical, Biological, Environmental Engineering and Transport Systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可充电电池已成为电动汽车、电子产品和电网储能最受欢迎的储能设备之一。为下一代可充电电池开发新型电解质需要更多地了解传输特性,微观结构以及微观结构对传输特性的影响。在这个项目中,研究人员将系统地改变电解质的成分和浓度,以确定先进的可充电电池的最佳解决方案。拟议研究的成功将提供高通量实验/表征和机器学习平台。此外,综合研究和教育项目将广泛影响大学、中学教育和公众。研究成果将纳入研究人员的课程,并用于培养跨学科研究领域的本科生和研究生。新的教育推广计划包括每年秋季为当地高中学生和教师举办电解质储能研讨会,以增强该NSF项目的更广泛影响。电解质中的基本相互作用直接决定了本体电解质的溶剂化结构,动力学和电池性能。了解这些复杂的相互作用及其与电解液性能的相关性,对于探索其工作机理,实现电池电解液的合理设计具有重要意义。该提案的新奇在于使用先进的高通量表征,并借助MD模拟和机器学习来确定分子相互作用与电池电解质宏观性质之间的联系。该提案旨在(1)通过多峰表征方法拉曼和X射线获得对溶剂化结构的良好理解,以进行高通量实验/表征。高通量X射线散射技术(APS的USAXS/SAXS/WAXS)将用于表征溶液组织作为离子组成,离子浓度和温度的函数;(2)通过高通量计算筛选研究研究传输特性来关联结构-性能关系。AIMD和MD将开发一个计算平台来筛选结构/性能关系;(3)将创建基于机器学习的数据分析平台,通过分析高通量的结构和模拟数据来预测和识别电池性能,本项目由材料研究部和化学,生物,环境工程和运输系统。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yang Zhang其他文献

ニュース記事の読み方の判断支援に関する研究
决定如何阅读新闻文章的支持研究
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    KIRIHATA Makoto;MA Qiang;Chengyang Ye;伊藤優希;Chengyang Ye;Chengyang Ye;福知侑也;平野瑠登;Chengyang Ye;井口勝太;Yang Zhang;前川丈幸
  • 通讯作者:
    前川丈幸
ニュース記事の考慮の有無による 株価指数の予測結果の差に基づく経済的影響力の推定
基于考虑和不考虑新闻文章的股指预测结果差异的经济影响力估计
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    KIRIHATA Makoto;MA Qiang;Chengyang Ye;伊藤優希;Chengyang Ye;Chengyang Ye;福知侑也;平野瑠登;Chengyang Ye;井口勝太;Yang Zhang;前川丈幸;福知侑也;米田宏生
  • 通讯作者:
    米田宏生
有価証券報告書の分析に基づく重要な新着ニュースの発見.
根据证券报告分析发现重要的新消息。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    KIRIHATA Makoto;MA Qiang;Chengyang Ye;伊藤優希;Chengyang Ye;Chengyang Ye;福知侑也;平野瑠登;Chengyang Ye;井口勝太;Yang Zhang;前川丈幸;福知侑也;米田宏生;Yang Zhang;Satoshi Yoshida;Yang Zhang;吉田聖;桐畑 誠;米田宏生
  • 通讯作者:
    米田宏生
Preliminary breakdown, following lightning discharge processes and lower positive charge region
闪电放电过程和较低正电荷区域之后的初步击穿
  • DOI:
    10.1016/j.atmosres.2015.03.017
  • 发表时间:
    2015-07
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Yang Zhang;Yijun Zhang;Dong Zheng;Weitao Lu
  • 通讯作者:
    Weitao Lu
Three-dimensional particle tracking velocimetry algorithm based on tetrahedron vote
基于四面体投票的三维粒子跟踪测速算法
  • DOI:
    10.1007/s00348-017-2485-9
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yutong Cui;Yang Zhang;Pan Jia;Yuan Wang;Jingcong Huang;Junlei Cui;Lai T Wing
  • 通讯作者:
    Lai T Wing

Yang Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yang Zhang', 18)}}的其他基金

Collaborative Research: Spectral Discrimination of Single Molecules with Photoactivatable Fluorescence
合作研究:利用光激活荧光对单分子进行光谱辨别
  • 批准号:
    2246548
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: Toolkits for Creating Interaction-powered Energy-aware Computing Systems
合作研究:HCC:小型:用于创建交互驱动的能源感知计算系统的工具包
  • 批准号:
    2228982
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: Programmable Visual Capabilities of Environments through 3D printed Light-transfer
合作研究:HCC:小型:通过 3D 打印光传输实现环境的可编程视觉功能
  • 批准号:
    2213843
  • 财政年份:
    2022
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Framework: Sofware: Collaborative Research: CyberWater -An open and sustainable framework for diverse data and model integration with provenance and access to HPC
框架:软件:协作研究:Cyber​​Water - 一个开放且可持续的框架,用于将各种数据和模型集成到 HPC 的来源和访问权限
  • 批准号:
    2018500
  • 财政年份:
    2020
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
IIBR: Informatics: RAPID: Genome-wide Structure and Function Modeling of the SARS-CoV-2 Virus
IIBR:信息学:RAPID:SARS-CoV-2 病毒的全基因组结构和功能建模
  • 批准号:
    2030790
  • 财政年份:
    2020
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Framework: Sofware: Collaborative Research: CyberWater -An open and sustainable framework for diverse data and model integration with provenance and access to HPC
框架:软件:协作研究:Cyber​​Water - 一个开放且可持续的框架,用于将各种数据和模型集成到 HPC 的来源和访问权限
  • 批准号:
    1835656
  • 财政年份:
    2019
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
I-Corps: Soft Robotic Arms as Human-Compatible Machines
I-Corps:作为人类兼容机器的软机械臂
  • 批准号:
    1946216
  • 财政年份:
    2019
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
  • 批准号:
    1564756
  • 财政年份:
    2016
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Climate Mitigation and Earth System Management from Local to Global Scale: Modeling Technology-Driven Futures
从地方到全球规模的气候减缓和地球系统管理:模拟技术驱动的未来
  • 批准号:
    1049200
  • 财政年份:
    2011
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: Developing an Intergovernmental Management Framework for Sustainable Recovery Following Catastrophic Disasters
合作研究:制定灾难性灾害后可持续恢复的政府间管理框架
  • 批准号:
    1029298
  • 财政年份:
    2010
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 57万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323936
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了