Power operations in equivariant cohomology
等变上同调中的幂运算
基本信息
- 批准号:1406121
- 负责人:
- 金额:$ 19.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Homotopy theory is a branch of topology; it arose as the study of certain invariant properties of spaces, namely those left unchanged by continuous deformations. The most powerful tools for studying such properties are what are called "cohomology theories". Cohomology theories are illuminated by the theory of formal groups, which in turn are closely related to problems in number theory. The aim of this project is to understand aspects of this relationship, with the prospect of creating new computational tools in homotopy theory. This project concerns the theory of power operations in equivariant cohomology theories. Several interrelated projects are proposed, which aim to draw connections between the theory of ultracommutative ring spectra, which generalize commutative ring spectra to the equivariant setting, and the algebraic geometry of isogenies of elliptic curves and formal groups. These connections will advance understanding of topological invariants such as elliptic cohomology.
同伦论是拓扑学的一个分支,它是研究空间的某些不变性质,即那些因连续变形而保持不变的性质。研究这些性质最有力的工具是所谓的“上同调理论”。上同调理论是由形式群理论阐明的,而形式群理论又与数论中的问题密切相关。这个项目的目的是了解这种关系的各个方面,并展望在同伦理论中创造新的计算工具的前景。本课题涉及等变上同调理论中的幂运算理论。提出了几个相关的方案,旨在建立超交换环谱理论与椭圆曲线和形式群的同构的代数几何之间的联系。超交换环谱理论将交换环谱推广到等变环境。这些联系将促进对诸如椭圆上同调之类的拓扑不变量的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Rezk其他文献
Brown-Comenetz duality and the Adams spectral sequence
布朗-科梅内茨对偶性和亚当斯谱序列
- DOI:
10.1353/ajm.1999.0043 - 发表时间:
1999 - 期刊:
- 影响因子:1.7
- 作者:
M. Mahowald;Charles Rezk - 通讯作者:
Charles Rezk
Looijenga line bundles in complex analytic elliptic cohomology
复解析椭圆上同调中的 Looijenga 线束
- DOI:
10.2140/tunis.2020.2.1 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Charles Rezk - 通讯作者:
Charles Rezk
The units of a ring spectrum and a logarithmic cohomology operation
- DOI:
10.1090/s0894-0347-06-00521-2 - 发表时间:
2004-07 - 期刊:
- 影响因子:3.9
- 作者:
Charles Rezk - 通讯作者:
Charles Rezk
A cartesian presentation of weak n–categories
- DOI:
10.2140/gt.2010.14.521 - 发表时间:
2009-01 - 期刊:
- 影响因子:2
- 作者:
Charles Rezk - 通讯作者:
Charles Rezk
Charles Rezk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Rezk', 18)}}的其他基金
Homotopy Theory and Higher Categories
同伦论和更高范畴
- 批准号:
1006054 - 财政年份:2010
- 资助金额:
$ 19.47万 - 项目类别:
Continuing Grant
相似海外基金
HiPERCAM and ULTRACAM operations
HiPERCAM 和 ULTRACAM 操作
- 批准号:
ST/Z000033/1 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Research Grant
Advances in rational operations in free analysis
自由分析中理性运算的进展
- 批准号:
2348720 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Standard Grant
NeTS: Small: NSF-DST: Modernizing Underground Mining Operations with Millimeter-Wave Imaging and Networking
NeTS:小型:NSF-DST:利用毫米波成像和网络实现地下采矿作业现代化
- 批准号:
2342833 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Standard Grant
CPS: Small: NSF-DST: Autonomous Operations of Multi-UAV Uncrewed Aerial Systems using Onboard Sensing to Monitor and Track Natural Disaster Events
CPS:小型:NSF-DST:使用机载传感监测和跟踪自然灾害事件的多无人机无人航空系统自主操作
- 批准号:
2343062 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Standard Grant
Conference: Artificial Intelligence Summer School for Computer Science and Operations Research Education; College Park, Maryland; 19-24 May 2024
会议:计算机科学和运筹学教育人工智能暑期学校;
- 批准号:
2408982 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
- 批准号:
2400014 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Standard Grant
SBIR Phase I: Optimizing Safety and Fuel Efficiency in Autonomous Rendezvous and Proximity Operations (RPO) of Uncooperative Objects
SBIR 第一阶段:优化不合作物体自主交会和邻近操作 (RPO) 的安全性和燃油效率
- 批准号:
2311379 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Standard Grant
Novel techniques of percutaneous sonography-guided surgical operations (SonoSurgery
经皮超声引导外科手术新技术(SonoSurgery
- 批准号:
10087309 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Collaborative R&D
Tropical Cyclone Operations and Research Forum (TCORF)/Interdepartmental Hurricane Conference (IHC); Lakeland, Florida; March 4-8, 2024
热带气旋运行与研究论坛 (TCORF)/跨部门飓风会议 (IHC);
- 批准号:
2413746 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Standard Grant
I-Corps: Translation potential of minimally invasive tubular retractors to maximize visualization in spine operations
I-Corps:微创管状牵开器的翻译潜力,可最大限度地提高脊柱手术的可视化
- 批准号:
2422243 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Standard Grant