Emerging Issues in Modeling Longitudinal Observations with Censoring

带有审查的纵向观测建模中出现的新问题

基本信息

  • 批准号:
    1407142
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2017-09-30
  • 项目状态:
    已结题

项目摘要

Longitudinal studies--commonly referred to as cohort studies in epidemiology or panel studies in sociology--are of fundamental importance in understanding time related issues within the same group of subjects. In longitudinal studies, the collection of information can be stopped at the end of the study, or at the time of dropout of a study participant, or at the time of the occurrence of a terminal event. Death, the most common terminal event, often occurs in aging cohort studies and fatal disease follow-up studies, e.g., organ failure or cancer studies. If not handled appropriately, the occurrence of terminal event can cause serious bias in statistical inference, leading to incorrect conclusions. The current literature has primarily focused on modeling the longitudinally measured variables given that the terminal event has not happened yet, hence the observed repeated measures "terminated" by a terminal event are implicitly treated as incomplete data. Such a modeling strategy, however, is inappropriate for many studies when some effect of interest is directly related to the terminal event time, such as the medical cost data. In this project, a conditional modeling strategy will be implemented, which treats repeated measures up to a terminal event as complete data and directly models the effect of terminal event time on a response variable. A related problem is some predictor variable subject to limit of detection in regression analysis, which occurs frequently in studies involving assay measures, where measures of certain substance (e.g., hormone, air pollutant, or water contaminant) become unreliable when their concentrations are below certain level due to technology limitation. The current literature has focused on primarily ad hoc imputation or unverifiable model assumptions for the predictor variable subject to limit of detection, but these methods generally yield biased results. This project will tackle this issue using robust statistical methods, which follow similarly the conditional modeling strategy for terminal events, and yield more reliable results than existing approaches.The project investigates modeling strategies that model the effect of terminal event time directly by treating it as a covariate in longitudinal studies. In such statistical models, the usual relationship of interest between the longitudinally measured response variable and covariates is kept when data collecting time is far from the terminal event time, and the relationship becomes increasingly related to the terminal event time when data collecting time is close to the terminal event. Such models provide much more intuitive and sensible interpretations, and can be applied to recurrent events data with the presence of a terminal event. Both parametric and semiparametric models will be considered. Estimating methods for parameters in the proposed models will be investigated. The asymptotic theory for the case that the terminal event time is subject to right censoring will be a major focus. A closely related set of longitudinal regression problems with censored covariates considered in this project is about the issue of detection limit for covariates. The validity of any estimating approach relies on how reliably one can model and estimate the tail distribution of the covariate subject to limit of detection. Due to the feature of this type of data, parametric models are not verifiable and nonparametric models are not able to gain any useful information about the missing tail distribution. The project investigates semiparametric models, which are able to gain useful information from observed data and are insensitive to model misspecification of the missing tail probabilities.
纵向研究--通常被称为流行病学的队列研究或社会学的小组研究--对于理解同一组受试者中与时间有关的问题至关重要。在纵向研究中,信息收集可以在研究结束时、研究参与者退学时、或终末期事件发生时停止。死亡是最常见的终末期事件,通常发生在老龄化队列研究和致命疾病后续研究中,例如器官衰竭或癌症研究。如果处理不当,终端事件的发生可能会造成统计推断的严重偏差,导致错误的结论。目前的文献主要集中于在终端事件尚未发生的情况下对纵向测量的变量进行建模,因此被终端事件“终止”的观测到的重复测量被隐含地视为不完整数据。然而,当一些感兴趣的影响与最终事件时间直接相关时,例如医疗成本数据,这种建模策略对于许多研究是不合适的。在本项目中,将实施条件建模策略,将直到终端事件的重复测量视为完整数据,并直接对终端事件时间对响应变量的影响进行建模。一个相关的问题是回归分析中的一些受检测限度限制的预测变量,这种情况经常出现在涉及分析措施的研究中,其中某些物质(例如激素、空气污染物或水污染物)的测量因技术限制而低于一定水平时变得不可靠。目前的文献主要集中在对受检测极限限制的预测变量的临时补偿或不可验证的模型假设,但这些方法通常产生有偏差的结果。这个项目将使用稳健的统计方法来解决这个问题,这种方法类似于对终端事件的条件建模策略,并且比现有的方法产生更可靠的结果。该项目研究建模策略,通过在纵向研究中将其作为协变量来直接建模终端事件时间的影响。在这种统计模型中,当数据采集时间远离终端事件时间时,纵向测量的响应变量与协变量之间保持通常的关注关系,而当数据采集时间接近终端事件时,这种关系变得与终端事件时间越来越相关。这样的模型提供了更直观和合理的解释,并且可以应用于存在终端事件的重复事件数据。参数模型和半参数模型都将被考虑。将研究所提出的模型中参数的估计方法。关于终端事件时间服从右删失情形的渐近理论将是一个主要的焦点。这个项目中考虑的一组密切相关的带有删失协变量的纵向回归问题是关于协变量的检测限的问题。任何估计方法的有效性取决于一个人在检测极限下建模和估计协变量的尾部分布的可靠性有多高。由于这类数据的特点,参数模型是不可验证的,非参数模型无法获得关于缺失尾部分布的任何有用信息。该项目研究半参数模型,它能够从观测数据中获得有用的信息,并且对模型错误指定的丢失尾部概率不敏感。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bin Nan其他文献

A Robust Error-Resistant View Selection Method for 3D Reconstruction
一种鲁棒、抗错的 3D 重建视图选择方法
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shaojie Zhang;Yinghui Wang;Bin Nan;Wei Li;Jinlong Yang;Tao Yan;Liangyi Huang;Mingfeng Wang;Ibragim R. Atadjanov
  • 通讯作者:
    Ibragim R. Atadjanov
Magnetic-susceptibility-dependent ratiometric probes for enhancing quantitative MRI
用于增强定量磁共振成像的基于磁化率的比率探针
  • DOI:
    10.1038/s41551-024-01286-4
  • 发表时间:
    2024-11-29
  • 期刊:
  • 影响因子:
    26.600
  • 作者:
    Cheng Zhang;Bin Nan;Juntao Xu;Tengxiang Yang;Li Xu;Chang Lu;Xiao-Bing Zhang;Jianghong Rao;Guosheng Song
  • 通讯作者:
    Guosheng Song
No excess of early onset cancer in family members of Wilms tumor patients
肾母细胞瘤患者的家庭成员中没有出现早发癌症的现象
  • DOI:
    10.1002/1097-0142(20010915)92:6<1606::aid-cncr1486>3.0.co;2-i
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    J. Felgenhauer;Jean M. Barce;R. L. Benson;Bin Nan;J. Olson;N. Breslow
  • 通讯作者:
    N. Breslow
Stochastic trajectory optimization for 6-DOF spacecraft autonomous rendezvous and docking with nonlinear chance constraints
非线性机会约束下六自由度航天器自主交会对接随机轨迹优化
  • DOI:
    10.1016/j.actaastro.2023.04.004
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Yanquan Zhang;Min Cheng;Bin Nan;Shunli Li
  • 通讯作者:
    Shunli Li

Bin Nan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bin Nan', 18)}}的其他基金

High-Dimensional Inference beyond Linear Models
超越线性模型的高维推理
  • 批准号:
    1915711
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Emerging Issues in Modeling Longitudinal Observations with Censoring
带有审查的纵向观测建模中出现的新问题
  • 批准号:
    1756078
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Estimation Theory for Semiparametric Models with Bundled Parameters
具有捆绑参数的半参数模型的估计理论
  • 批准号:
    1007590
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Theory and Methodology for Semiparametric Linear Models with Censored Data
具有删失数据的半参数线性模型的理论和方法
  • 批准号:
    0706700
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

EAGER GERMINATION: Computational Modeling from Scenario Development: A Pedagogy for Generating Novel Research Questions to Address Critical Societal Issues
渴望萌发:情景开发的计算模型:产生新的研究问题以解决关键社会问题的教学法
  • 批准号:
    2203623
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
statistical methods for some emerging issues in modeling latent variables
潜在变量建模中一些新出现问题的统计方法
  • 批准号:
    RGPIN-2015-04746
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
statistical methods for some emerging issues in modeling latent variables
潜在变量建模中一些新出现问题的统计方法
  • 批准号:
    RGPIN-2015-04746
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
statistical methods for some emerging issues in modeling latent variables
潜在变量建模中一些新出现问题的统计方法
  • 批准号:
    RGPIN-2015-04746
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
statistical methods for some emerging issues in modeling latent variables
潜在变量建模中一些新出现问题的统计方法
  • 批准号:
    RGPIN-2015-04746
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Emerging Issues in Modeling Longitudinal Observations with Censoring
带有审查的纵向观测建模中出现的新问题
  • 批准号:
    1756078
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Uniting field study and modeling study for breaking through scale issues in rainfall-runoff processes
结合实地研究和模型研究突破降雨径流过程尺度问题
  • 批准号:
    16K06501
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
statistical methods for some emerging issues in modeling latent variables
潜在变量建模中一些新出现问题的统计方法
  • 批准号:
    RGPIN-2015-04746
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
RAPID: Tackling Critical Issues in the Ebola Epidemic through Modeling: Viral Evolution
RAPID:通过建模解决埃博拉疫情中的关键问题:病毒进化
  • 批准号:
    1521049
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
statistical methods for some emerging issues in modeling latent variables
潜在变量建模中一些新出现问题的统计方法
  • 批准号:
    RGPIN-2015-04746
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了