Theory and Methodology for Semiparametric Linear Models with Censored Data

具有删失数据的半参数线性模型的理论和方法

基本信息

  • 批准号:
    0706700
  • 负责人:
  • 金额:
    $ 17.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-06-01 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

Instead of modeling the hazard function for censored survival data as the famous Cox model does, modeling the survival time directly by certain transformation becomes increasingly appealing to practitioners because it postulates a simple relationship between the response variable and covariates with easily interpretable parameters. As a special example, the semiparametric accelerated failure time model that transforms the failure time by logarithm has been studied extensively in the past decade. Existing challenges for those semiparametric linear transformation models include semiparametric efficient estimation, asymptotic theory with more realistic conditions that may lead to good properties for survival time prediction, a measurability issue in the stochastic integral formulation for the outcome-dependent weighted estimating methods, and high-dimensional data analysis. The investigator proposes new methods to tackle those emerging issues in the semiparametric linear transformation models. Asymptotic theories will be proved by using the modern empirical process theory. Numerical implementations of all the proposed methods will be based on either those well developed algorithms for discrete estimating functions or the Newton-Raphson method for smooth objective functions in which the infinite-dimensional parameter is approximated by a smoothing estimator. To enhance the predicting ability, more flexible transformations are considered for problems with high-dimensional data. Penalized method will be investigated in order to obtain simultaneous variable selection and survival time prediction.Statistical models considered in this project have important applications in a wide spectrum of disciplines such as biology, medicine, health studies, and engineering. The proposed research is particularly motivated by the multi-cohort study for the women's reproductive life staging in which the prediction of age at menopause is of major interest, and by the Michigan ovary cancer and lung cancer studies that look for relevant genes and good models for predicting patients' survival using gene expression data. It will provide methods that use data more efficiently and yield more precise prediction. It will also allow the investigator to add more thorough statistical results to the courses of advanced survival analysis and semiparametric models for graduate students. The proposed research activities will motivate graduate students to become independent researchers who are able to engage in fundamental statistical research.
与著名的考克斯模型不同,直接通过某些变换对生存时间建模越来越受到从业者的欢迎,因为它假设了响应变量和协变量之间的简单关系,并且具有易于解释的参数。作为一个特例,半参数加速失效时间模型将失效时间用对数变换,在过去的十年中得到了广泛的研究。这些半参数线性变换模型现有的挑战包括半参数有效估计、具有更现实条件的渐进理论(可能导致生存时间预测的良好性质)、结果相关加权估计方法的随机积分公式中的可测性问题,以及高维数据分析。研究者提出了新的方法来解决半参数线性变换模型中出现的问题。渐近理论将使用现代经验过程理论来证明。所有提出的方法的数值实现将基于那些发达的离散估计函数的算法或平滑的目标函数,其中的无穷维参数近似的平滑估计的牛顿-拉夫森方法。为了提高预测能力,更灵活的转换被认为是高维数据的问题。惩罚方法将被研究,以获得同时变量选择和生存时间prediction.Statistical模型考虑在这个项目中有重要的应用在广泛的学科,如生物学,医学,健康研究和工程。这项研究的动机特别是多队列研究的妇女的生殖生活分期,其中预测绝经年龄是主要的兴趣,并通过密歇根州卵巢癌和肺癌研究,寻找相关基因和良好的模型预测患者的生存使用基因表达数据。它将提供更有效地使用数据并产生更精确预测的方法。它还将允许研究人员为研究生的高级生存分析和半参数模型课程添加更全面的统计结果。拟议的研究活动将激励研究生成为能够从事基础统计研究的独立研究人员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bin Nan其他文献

A Robust Error-Resistant View Selection Method for 3D Reconstruction
一种鲁棒、抗错的 3D 重建视图选择方法
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shaojie Zhang;Yinghui Wang;Bin Nan;Wei Li;Jinlong Yang;Tao Yan;Liangyi Huang;Mingfeng Wang;Ibragim R. Atadjanov
  • 通讯作者:
    Ibragim R. Atadjanov
Magnetic-susceptibility-dependent ratiometric probes for enhancing quantitative MRI
用于增强定量磁共振成像的基于磁化率的比率探针
  • DOI:
    10.1038/s41551-024-01286-4
  • 发表时间:
    2024-11-29
  • 期刊:
  • 影响因子:
    26.600
  • 作者:
    Cheng Zhang;Bin Nan;Juntao Xu;Tengxiang Yang;Li Xu;Chang Lu;Xiao-Bing Zhang;Jianghong Rao;Guosheng Song
  • 通讯作者:
    Guosheng Song
No excess of early onset cancer in family members of Wilms tumor patients
肾母细胞瘤患者的家庭成员中没有出现早发癌症的现象
  • DOI:
    10.1002/1097-0142(20010915)92:6<1606::aid-cncr1486>3.0.co;2-i
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    J. Felgenhauer;Jean M. Barce;R. L. Benson;Bin Nan;J. Olson;N. Breslow
  • 通讯作者:
    N. Breslow
Stochastic trajectory optimization for 6-DOF spacecraft autonomous rendezvous and docking with nonlinear chance constraints
非线性机会约束下六自由度航天器自主交会对接随机轨迹优化
  • DOI:
    10.1016/j.actaastro.2023.04.004
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Yanquan Zhang;Min Cheng;Bin Nan;Shunli Li
  • 通讯作者:
    Shunli Li

Bin Nan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bin Nan', 18)}}的其他基金

High-Dimensional Inference beyond Linear Models
超越线性模型的高维推理
  • 批准号:
    1915711
  • 财政年份:
    2019
  • 资助金额:
    $ 17.27万
  • 项目类别:
    Standard Grant
Emerging Issues in Modeling Longitudinal Observations with Censoring
带有审查的纵向观测建模中出现的新问题
  • 批准号:
    1756078
  • 财政年份:
    2017
  • 资助金额:
    $ 17.27万
  • 项目类别:
    Continuing Grant
Emerging Issues in Modeling Longitudinal Observations with Censoring
带有审查的纵向观测建模中出现的新问题
  • 批准号:
    1407142
  • 财政年份:
    2014
  • 资助金额:
    $ 17.27万
  • 项目类别:
    Continuing Grant
Estimation Theory for Semiparametric Models with Bundled Parameters
具有捆绑参数的半参数模型的估计理论
  • 批准号:
    1007590
  • 财政年份:
    2010
  • 资助金额:
    $ 17.27万
  • 项目类别:
    Continuing Grant

相似海外基金

SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 17.27万
  • 项目类别:
    Continuing Grant
A methodology to connect functionalized gonadal constructs to a chick embryo through mechanically induced blood vessels from an egg
一种通过鸡蛋机械诱导血管将功能化性腺结构连接到鸡胚胎的方法
  • 批准号:
    24K15741
  • 财政年份:
    2024
  • 资助金额:
    $ 17.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAS: Developing Data-Driven, Automated Methodology to Understand and Control Light-Driven Catalytic Processes
CAS:开发数据驱动的自动化方法来理解和控制光驱动的催化过程
  • 批准号:
    2350257
  • 财政年份:
    2024
  • 资助金额:
    $ 17.27万
  • 项目类别:
    Continuing Grant
スマートシティのエコシステム構築メソドロジー(methodology)
智慧城市生态系统构建方法论
  • 批准号:
    24K05098
  • 财政年份:
    2024
  • 资助金额:
    $ 17.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mindset Dynamics: Using the Perception Clarity Methodology (PCM) to shift perceptions
心态动态:使用感知清晰度方法 (PCM) 来转变认知
  • 批准号:
    ES/Y011015/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.27万
  • 项目类别:
    Research Grant
Supporting Mental Health in Young People: Integrated Methodology for cLinical dEcisions and evidence-based interventions
支持年轻人的心理健康:临床决策和循证干预的综合方法
  • 批准号:
    10072391
  • 财政年份:
    2023
  • 资助金额:
    $ 17.27万
  • 项目类别:
    EU-Funded
MEGASKILLS [MEthodology of Psycho-pedagogical, Big Data and Commercial Video GAmes procedures for the European SKILLS Agenda Implementation]
MEGASKILLS [欧洲技能议程实施的心理教育学、大数据和商业视频游戏程序的方法]
  • 批准号:
    10069843
  • 财政年份:
    2023
  • 资助金额:
    $ 17.27万
  • 项目类别:
    EU-Funded
Development and Implementation of Participatory Urban Design Methodology for Introducing Climate Change Mitigation and Adaptation Measures
制定和实施参与式城市设计方法,引入气候变化减缓和适应措施
  • 批准号:
    23H01578
  • 财政年份:
    2023
  • 资助金额:
    $ 17.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Curriculum Development Methodology for Inclusive Physical Education that Respects Diversity
尊重多样性的包容性体育课程开发方法
  • 批准号:
    23K02486
  • 财政年份:
    2023
  • 资助金额:
    $ 17.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Agile development methodology of matched synthetic control for Bayesian trials in the era of genomic medicine
基因组医学时代贝叶斯试验匹配合成控制的敏捷开发方法
  • 批准号:
    2890403
  • 财政年份:
    2023
  • 资助金额:
    $ 17.27万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了