Spin Waves in Disordered Potentials: Interplay between Disorder, Nonlinearity, and Incoherence

无序势中的自旋波:无序、非线性和不相干之间的相互作用

基本信息

  • 批准号:
    1407962
  • 负责人:
  • 金额:
    $ 48.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Non-Technical AbstractWave theory is fundamental to physics, underlying everything from radar to fiber optics to cell phone communications. Waves occur in magnetic materials, where the magnetic spin precesses in a wave pattern, propagating energy and information. Magnetic materials are important in many technological contexts, including solid-state hard drives. In a perfectly ordered magnetic material a wave would propagate smoothly; however, real materials have disorder, imperfections that lead to localization of waves, so that information or energy gets trapped in a certain location in the material. This research seeks to understand many unanswered questions about localization of waves in disordered magnetic materials. In particular, three main questions are addressed: (1) Does coherence matter? Lasers, for example, are coherent, and spin waves can be too. (2) How does nonlinearity destroy localization? Nonlinearity means the whole is not the sum of the parts. In spin waves the strength of this effect can be controlled, and its impact on localization explored. (3) Can chaos cause delocalization? Real materials often exhibit chaos. Does chaos allow a localized wave to escape? To support this research and create tomorrow's scientists, the project provides extensive training opportunities for students at undergraduate and graduate levels, especially interdisciplinary cross-training between experimental and theoretical physics. Outreach to high schools in Colorado is accomplished through the Colorado State University "Little Shop of Physics" program, focusing on those in disadvantaged areas. Outreach to the broader scientific community occurs via organizing of scientific conferences, workshops, and symposia.Technical AbstractAnderson localization and Aubry-André localization have both attracted rather considerable interest across a number of disciplines in recent years due to their ubiquitous nature. Theoretical studies have yielded many predictions about the effects of coherence and nonlinearity on localization that are of great fundamental importance but are often controversial or debatable. The research in this project not only settles several current debates on localization, but also provides first experimental justifications to a number of theoretical predictions. As such, the project deepens the understanding of the interplay between disorder, nonlinearity, and coherence in general. Furthermore, the research enhances the understanding of spin-wave dynamics in magnetic thin films and damping processes in magnetic materials with disordered defects. Specifically, the studies make use of spin waves in yttrium iron garnet (YIG) thin film strips. Disordered potentials for spin waves are developed by two approaches: (1) the fabrication of disordered grooves on the surfaces of YIG strips and (2) the development of disordered local field variations by depositing meander lines on the YIG strips and passing electric currents through the lines. Two types of disordered potentials are considered: random potentials and quasi-periodic potentials. The former is used to study Anderson localization, while the latter is used for the study of Aubry-André localization. The research consists of both experimental and theoretical efforts. It is carried out through integral collaborations between Mingzhong Wu's experimental group at Colorado State University and Lincoln Carr's theoretical group at Colorado School of Mines. The new program has transformative impacts in view of promising potential applications of localization effects. For example, the energy density within a localized mode can be several orders of magnitude larger than that of the incident wave, and this huge field enhancement has potential applications for energy harvest, storage, and conversion. In addition to mentorship at undergraduate to graduate levels and outreach as described above, the principal investigators are jointly engaged in curriculum development, focusing on bringing up-to-date applications and experimental demonstrations into graduate core courses in electrodynamics and classical dynamical systems.
非技术摘要波理论是物理学的基础,从雷达到光纤再到手机通信,无所不包。波出现在磁性材料中,磁自旋以波的形式前进,传播能量和信息。磁性材料在许多技术背景下都很重要,包括固态硬盘驱动器。在完美有序的磁性材料中,波可以平稳地传播;然而,真正的材料具有无序,即导致波局部化的缺陷,因此信息或能量被困在材料的某个位置。这项研究试图理解关于无序磁性材料中波的局域化的许多悬而未决的问题。具体而言,本文涉及三个主要问题:(1)连贯重要吗?例如,激光是相干的,自旋波也可以是相干的。(2)非线性如何破坏局部化?非线性意味着整体不是各部分的总和。在自旋波中,这种效应的强度是可以控制的,并探讨了它对局域化的影响。(3)混乱会不会导致去本土化?真实的材料通常表现出混沌。混乱会让局部化的波逃逸吗?为了支持这项研究并培养未来的科学家,该项目为本科生和研究生提供了广泛的培训机会,特别是实验物理和理论物理之间的跨学科交叉培训。科罗拉多州高中的外展是通过科罗拉多州立大学的“物理小商店”计划实现的,重点是贫困地区的学生。技术摘要Anderson本地化和Aubry-André本地化由于其无处不在的性质,近年来在许多学科中都引起了相当大的兴趣。理论研究已经产生了许多关于连贯和非线性对本地化影响的预测,这些预测具有重要的基础意义,但往往存在争议或争议。该项目的研究不仅解决了当前几个关于本地化的争论,还为一些理论预测提供了初步的实验证明。因此,该项目加深了对无序、非线性和连贯性之间相互作用的理解。此外,该研究进一步加深了对磁性薄膜中的自旋波动力学和无序缺陷磁性材料的减振过程的理解。具体地说,这些研究利用了YIG薄膜带材中的自旋波。用两种方法得到了自旋波的无序势:(1)在YIG带表面制造无序沟槽;(2)通过在YIG带上沉积曲折线并使电流通过这些线而形成无序的局域场变化。考虑了两种类型的无序势:随机势和准周期势。前者用于研究Anderson局部化,后者用于研究Aubry-André局部化。本研究包括实验和理论两方面的工作。它是通过科罗拉多州立大学吴明忠的实验小组和科罗拉多矿业学院的林肯·卡尔的理论小组的整体合作进行的。鉴于本地化效应的潜在应用前景,新计划具有变革性的影响。例如,局域模式中的能量密度可以比入射波的能量密度大几个数量级,这种巨大的场增强在能量采集、存储和转换方面具有潜在的应用。除了如上所述的本科生到研究生阶段的指导和外展,主要研究人员还共同参与课程开发,重点是将最新的应用程序和实验演示带入电动力学和经典动力系统的研究生核心课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mingzhong Wu其他文献

Structural and magnetic properties of nanostructured Ni0.5Zn0.5Fe2O4 films fabricated by thermal spray
热喷涂纳米结构Ni0.5Zn0.5Fe2O4薄膜的结构和磁性能
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Ge;X. Ma;Tony Zhang;Mingzhong Wu;Heng Zhang;Y. D. Zhang;J. Ings;J. Yacaman
  • 通讯作者:
    J. Yacaman
Cloning and trapping of magnetostatic spin-wave pulses by parametric pumping
通过参数泵浦克隆和捕获静磁自旋波脉冲
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin R. Smith;V. Vasyuchka;Mingzhong Wu;G. Melkov;C. Patton
  • 通讯作者:
    C. Patton
Supplemental Materials for “ Photo-Spin-Voltaic Effect ”
“光自旋伏打效应”补充材料
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Ellsworth;Lei Lu;Jin Lan;Houchen Chang;Peng Li;Zhe Wang;Jun Hu;Bryan Johnson;Yuqi;Bian;Jiang Xiao;R. Wu;Mingzhong Wu
  • 通讯作者:
    Mingzhong Wu
Structure and magnetic properties of NiFe/SiO2 and Co/SiO2 nanocomposites consolidated by detonation compaction
爆炸压实固结NiFe/SiO2和Co/SiO2纳米复合材料的结构和磁性能
  • DOI:
    10.1063/1.1558606
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. D. Zhang;X. Ma;S. Hui;Mingzhong Wu;S. Ge;W. Hines;J. Budnick;B. Cetegen;S. Semenov
  • 通讯作者:
    S. Semenov
Internal quantum efficiency of c-plane InGaN and m-plane InGaN on Si and GaN
Si和GaN上c面InGaN和m面InGaN的内量子效率
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    X. Ni;J. Lee;Mingzhong Wu;Xing Li;R. Shimada;Ü. Özgür;A. Baski;H. Morkoç;T. Paskova;G. Mulholland;K. Evans
  • 通讯作者:
    K. Evans

Mingzhong Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mingzhong Wu', 18)}}的其他基金

Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
  • 批准号:
    2420266
  • 财政年份:
    2024
  • 资助金额:
    $ 48.21万
  • 项目类别:
    Standard Grant
Spin Current Phenomena in Non-Collinear Antiferromagnets:From Fundamental Physics to Device Concepts
非共线反铁磁体中的自旋流现象:从基础物理到器件概念
  • 批准号:
    2408972
  • 财政年份:
    2023
  • 资助金额:
    $ 48.21万
  • 项目类别:
    Standard Grant
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
  • 批准号:
    2002980
  • 财政年份:
    2020
  • 资助金额:
    $ 48.21万
  • 项目类别:
    Standard Grant
Spin Current Phenomena in Non-Collinear Antiferromagnets:From Fundamental Physics to Device Concepts
非共线反铁磁体中的自旋流现象:从基础物理到器件概念
  • 批准号:
    1915849
  • 财政年份:
    2019
  • 资助金额:
    $ 48.21万
  • 项目类别:
    Standard Grant
Spintronics with Yttrium Iron Garnets - From Fundamental Physics to Device Concepts
使用钇铁石榴石的自旋电子学 - 从基础物理到设备概念
  • 批准号:
    1231598
  • 财政年份:
    2012
  • 资助金额:
    $ 48.21万
  • 项目类别:
    Standard Grant
Nonlinear Spin Waves in Magnetic Films: New Concepts and Applications
磁性薄膜中的非线性自旋波:新概念和应用
  • 批准号:
    0906489
  • 财政年份:
    2009
  • 资助金额:
    $ 48.21万
  • 项目类别:
    Continuing Grant
Novel Magnetic Nano Films and Devices for Millimeter Wave Communications
用于毫米波通信的新型磁性纳米薄膜和器件
  • 批准号:
    0725386
  • 财政年份:
    2007
  • 资助金额:
    $ 48.21万
  • 项目类别:
    Standard Grant

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Probing ultralight bosons with black holes and gravitational waves
用黑洞和引力波探测超轻玻色子
  • 批准号:
    DE240100206
  • 财政年份:
    2024
  • 资助金额:
    $ 48.21万
  • 项目类别:
    Discovery Early Career Researcher Award
Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
  • 批准号:
    2334171
  • 财政年份:
    2024
  • 资助金额:
    $ 48.21万
  • 项目类别:
    Continuing Grant
Travel: International Workshop on Numerical Modeling of Earthquake Motions: Waves and Ruptures
旅行:地震运动数值模拟国际研讨会:波浪和破裂
  • 批准号:
    2346964
  • 财政年份:
    2024
  • 资助金额:
    $ 48.21万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: CREST-PRP: Exploring the Impact of Heat-Waves and Nutrients on Bloom-Forming and Habitat-Building Seaweeds Along the South Florida Coast
博士后奖学金:CREST-PRP:探索热浪和营养物质对南佛罗里达海岸海藻形成和栖息地建设的影响
  • 批准号:
    2401066
  • 财政年份:
    2024
  • 资助金额:
    $ 48.21万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 48.21万
  • 项目类别:
    Standard Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
  • 批准号:
    2247396
  • 财政年份:
    2024
  • 资助金额:
    $ 48.21万
  • 项目类别:
    Standard Grant
Hilbert's Sixth Problem: From Particles to Waves
希尔伯特第六个问题:从粒子到波
  • 批准号:
    2350242
  • 财政年份:
    2024
  • 资助金额:
    $ 48.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: Characterizing Atmospheric Tropical-waves of the Lower Stratosphere with Reel-down Atmospheric Temperature Sensing for Strateole-2--RATS Chasing CATS!
合作研究:利用 Strateole-2 的卷轴大气温度传感来表征平流层下部的大气热带波——RATS 追逐 CATS!
  • 批准号:
    2335083
  • 财政年份:
    2024
  • 资助金额:
    $ 48.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: Characterizing Atmospheric Tropical-waves of the Lower Stratosphere with Reel-down Atmospheric Temperature Sensing for Strateole-2--RATS Chasing CATS!
合作研究:利用 Strateole-2 的卷轴大气温度传感来表征平流层下部的大气热带波——RATS 追逐 CATS!
  • 批准号:
    2335082
  • 财政年份:
    2024
  • 资助金额:
    $ 48.21万
  • 项目类别:
    Continuing Grant
Continuing Measurements of Water Vapor, Clouds, Aerosol, and Waves Above, and Across, the Tropical Tropopause Layer with in Situ Instruments on Circum-Tropical Isopycnic Balloons
使用环热带等密度气球上的现场仪器持续测量热带对流层顶层上方和上方的水蒸气、云、气溶胶和波浪
  • 批准号:
    2336110
  • 财政年份:
    2024
  • 资助金额:
    $ 48.21万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了