Collaborative Research: Design and modeling of novel superconducting circuits with coherent phase slips
合作研究:具有相干相滑的新型超导电路的设计和建模
基本信息
- 批准号:1408558
- 负责人:
- 金额:$ 31.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Superconductivity is a quantum phenomenon that manifests itself as an abrupt disappearance of resistivity in certain materials as temperature is lowered below their critical temperature. Recent advances in the nanometer size fabrication, materials science and high precision measurements made it possible to investigate a variety of novel superconducting nanosystems, which were almost unthinkable only a few years ago. Specifically the studies of quantum transport phenomena in nanoscale superconducting wires and circuits made of them are rapidly emerging as one of the central themes of modern physics and engineering. As wire is made narrower, a variety of intriguing quantum effects becomes apparent. Strong spatial confinement leads to intricate electron correlations that influence superconducting properties of the structure. Ultimately superconductivity could be gradually extinguished and some wires may display pronounced insulating behavior, leading to the so-called superconductor-insulator transition. Superconductors are extremely attractive systems from the point of view of future applications as they could become elementary building blocks for memory bits of quantum computers and other devices operating on coherent quantum tunneling events. The main aim of this joint project is to harness the power of quantum coherence, address the urgent problems of nanoscale-circuit-superconductivity at the frontier of current research, and discover new physics in this exciting field. Our approach will be to combine the expertise of a condensed matter theorist and an experimentalist both having extended experience in related fields. The collaborative structure of the research will provide a rich environment for training students in a broad spectrum of experimental nanoscience and theoretical condensed matter physics. Educational aspects will be further integrated through the development of courses directly related to the proposed research and through research-related seminars, science olympiads, and meetings that target high-school teachers.The goal of the project is to study emergent quantum transport phenomena in the modern nanoscale superconducting circuits driven far from equilibrium and populated with coherent phase slips to reveal the ultimate fate of superconducting correlations in the new domain of external conditions and environments. A substantial part of the proposed research is devoted to stochastic kinetics of the coherent phase slips in superconducting nanowires, nanowire-bridged resonators, and interferometers. The focus in on the mutual role of microwave bias and a magnetic field on the reentrant superconductivity, statistics of the supercurrent switching, bi-stability and current-voltage characteristics, and a study of even-odd parity effects for the phase slip tunneling events. Suggested studies of the excess shot noise, carried across the superconducting transition, will provide additional insights into the microscopic mechanisms of the relaxation and fluctuations. The project also dwells into the new area of exploring proximity-induced superconductivity between superconducting and semiconducting heterostructures that host topological order. This research direction aims to answer the key questions concerning robustness and stability of the topological protection to effects of interactions, disorder and other relevant perturbations. The long-term goal of this project is to develop novel superconducting qubits with coherent phase slips for quantum circuit electrodynamics applications. The proposed architecture designs are based on the phase-slip-junction, the phase-slip-oscillator and an alternative device based on the supercurrent carrying inductor with tunable nonlinearity. The success and completion of this proposal will be of value for the technological advances in the information processing and the photon detection. The technical and theoretical methods that will be developed as a part of this proposal are relevant to a much wider class of problems in the quantum physics of many-body systems. The results of the proposed work will be widely disseminated in publications, seminars, colloquia and conference presentations. Students working under this project will receive extensive training by studying modern aspects of the condensed matter physics, developing new conceptual approaches to nonequilibrium superconducting systems and pursuing original research. As a part of the diversity and educational initiatives PIs will expand research opportunities for the undergraduate students of underrepresented groups and contribute to the science olympiad interscholastic competition program.
超导性是一种量子现象,表现为当温度低于其临界温度时某些材料的电阻率突然消失。纳米尺寸制造、材料科学和高精度测量的最新进展使得研究各种新型超导纳米系统成为可能,这在几年前几乎是不可想象的。具体而言,对纳米级超导线及其制成的电路中的量子输运现象的研究正在迅速成为现代物理学和工程学的中心主题之一。随着导线变得更窄,各种有趣的量子效应变得显而易见。强烈的空间限制导致复杂的电子关联,影响结构的超导特性。最终,超导性可能会逐渐消失,一些电线可能会表现出明显的绝缘行为,导致所谓的超导体-绝缘体转变。 从未来应用的角度来看,超导体是极具吸引力的系统,因为它们可以成为量子计算机和其他在相干量子隧道事件上运行的设备的存储位的基本构建块。该联合项目的主要目的是利用量子相干性的力量,解决当前研究前沿的纳米级电路超导的紧迫问题,并在这个令人兴奋的领域发现新的物理现象。我们的方法将结合凝聚态理论家和实验家的专业知识,他们都在相关领域拥有丰富的经验。该研究的合作结构将为培养学生广泛的实验纳米科学和理论凝聚态物理提供丰富的环境。通过开发与拟议研究直接相关的课程以及针对高中教师的研究相关研讨会、科学奥林匹克竞赛和会议,教育方面将进一步整合。该项目的目标是研究现代纳米级超导电路中的新兴量子输运现象,这些现象远离平衡并充满相干相滑,以揭示超导关联的最终命运。 外部条件和环境的新领域。拟议研究的很大一部分致力于超导纳米线、纳米线桥谐振器和干涉仪中相干相滑移的随机动力学。重点研究微波偏置和磁场对折返超导的相互作用,超电流开关统计、双稳定性和电流电压特性,以及相滑隧道事件的偶奇宇称效应研究。建议对超导转变过程中的过量散粒噪声进行研究,将为弛豫和波动的微观机制提供更多见解。该项目还深入探讨了探索具有拓扑顺序的超导和半导体异质结构之间的邻近诱导超导性的新领域。该研究方向旨在回答有关拓扑保护对相互作用、无序和其他相关扰动影响的鲁棒性和稳定性的关键问题。该项目的长期目标是开发用于量子电路电动力学应用的具有相干相滑的新型超导量子位。所提出的架构设计基于相滑结、相滑振荡器和基于具有可调非线性的超电流承载电感器的替代装置。该提案的成功完成对于信息处理和光子探测方面的技术进步具有重要意义。作为该提案的一部分将开发的技术和理论方法与多体系统量子物理学中更广泛的问题相关。拟议工作的结果将在出版物、研讨会、座谈会和会议演讲中广泛传播。在该项目下工作的学生将通过研究凝聚态物理的现代方面、开发非平衡超导系统的新概念方法以及进行原创研究来接受广泛的培训。作为多样性和教育举措的一部分,PI 将扩大代表性不足群体的本科生的研究机会,并为科学奥林匹克校际竞赛计划做出贡献。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decoherence and radiation-free relaxation in Meissner transmon qubit coupled to Abrikosov vortices
- DOI:10.1103/physrevb.94.165128
- 发表时间:2016-10-14
- 期刊:
- 影响因子:3.7
- 作者:Ku, Jaseung;Yoscovits, Zack;Bezryadin, Alexey
- 通讯作者:Bezryadin, Alexey
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexey Bezryadin其他文献
Reversed Photoeffect in Transparent Graphene Nanocapacitors
透明石墨烯纳米电容器中的反转光效应
- DOI:
10.1021/acsaelm.9b00659 - 发表时间:
2019 - 期刊:
- 影响因子:4.7
- 作者:
A. Belkin;E. Ilin;I. Burkova;Alexey Bezryadin - 通讯作者:
Alexey Bezryadin
Tunnelling across a nanowire
在纳米线上进行隧道掘进
- DOI:
10.1038/484324b - 发表时间:
2012-04-18 - 期刊:
- 影响因子:48.500
- 作者:
Alexey Bezryadin - 通讯作者:
Alexey Bezryadin
Alexey Bezryadin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexey Bezryadin', 18)}}的其他基金
Zero energy modes in vortex cores: Spectroscopy and Majorana carousel braiding
涡核中的零能量模式:光谱学和马约拉纳旋转木马编织
- 批准号:
2104757 - 财政年份:2021
- 资助金额:
$ 31.94万 - 项目类别:
Continuing Grant
EAGER: BRAIDING: Multi-terminal Josephson circuits supporting nontrivial Chern topologies for anyonic qubits
EAGER:编织:多终端约瑟夫森电路支持任意子量子位的非平凡陈氏拓扑
- 批准号:
1836710 - 财政年份:2018
- 资助金额:
$ 31.94万 - 项目类别:
Standard Grant
Collaborative Research: Investigation of Superconducting Nanowires and Graphene Junctions Using a Coplanar Fabry-Perot Microwave Resonator as a Qubit Device
合作研究:使用共面法布里-珀罗微波谐振器作为量子位器件研究超导纳米线和石墨烯结
- 批准号:
1005645 - 财政年份:2010
- 资助金额:
$ 31.94万 - 项目类别:
Continuing Grant
CAREER: Quantum Properties of Ultrasmall Homogeneous Superconducting Nanostructures
职业:超小型均质超导纳米结构的量子特性
- 批准号:
0134770 - 财政年份:2002
- 资助金额:
$ 31.94万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
- 批准号:
2348641 - 财政年份:2024
- 资助金额:
$ 31.94万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 31.94万 - 项目类别:
Standard Grant
Collaborative Research: Meshed GNSS-Acoustic Array Design for Lower-Cost Dense Observation Fields
合作研究:用于低成本密集观测场的网状 GNSS 声学阵列设计
- 批准号:
2321297 - 财政年份:2024
- 资助金额:
$ 31.94万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 31.94万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 31.94万 - 项目类别:
Standard Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 31.94万 - 项目类别:
Continuing Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
- 批准号:
2335235 - 财政年份:2024
- 资助金额:
$ 31.94万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 31.94万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 31.94万 - 项目类别:
Standard Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
- 批准号:
2419423 - 财政年份:2024
- 资助金额:
$ 31.94万 - 项目类别:
Standard Grant














{{item.name}}会员




