Collaborative Research: Investigation of Superconducting Nanowires and Graphene Junctions Using a Coplanar Fabry-Perot Microwave Resonator as a Qubit Device

合作研究:使用共面法布里-珀罗微波谐振器作为量子位器件研究超导纳米线和石墨烯结

基本信息

项目摘要

****NON-TECHNICAL ABSTRACT****Recently, it became clear that quantum mechanics, which is traditionally used to describe individual and small groups of elementary particles (e.g., electrons and atoms), can also predict the behavior of the so-called "mesoscopic" objects, i.e. systems containing a large number of atoms like large molecules or nanodevices. The goal of this project is to investigate how the laws of quantum mechanics apply to nanowires. These nanowires are metallic cylinders having a diameter of a few billionth of a meter. The project will explore nanowires made out of superconducting metals. The scientific question to be addressed is the applicability of the Heisenberg uncertainty principle to the electrical current and electrical charge in nanodevices involving nanowires. The most advanced nanoscience and nanotechnology will be used to fabricate such wires. The measurements on nanowires will be done using a novel experimental approach, namely a nanowire will be inserted into a special type of microwave resonator called a microwave superconducting Fabry-Perot resonator. This project will explore the possibility of using the hybrid nanowire-resonator devices as qubits, the quantum mechanical analog of the classical "bit" that stores information in a computer. This project will support the education of graduate students in these advanced technologies, which will prepare them for scientific careers in academia and in our most advanced technology industries. Undergraduate students will also participate in the project, gaining training and hands-on experience in the most advanced scientific research. The project will also provide training to a postdoc. This research project receives support from the Division of Materials Research and the Physics Division.****TECHNICAL ABSTRACT****Recently, it became clear that macroscopic degrees of freedom, such as electrical current, can be described by laws of quantum mechanics for so-called mesoscopic systems: for example quantum mechanics is important for describing results of transport measurements in systems involving large molecules, nanoparticles, or superconducting nanodevices. The goal of this project is to investigate how the laws of macroscopic quantum mechanics apply to superconducting nanowires. In particular, quantum phase slips will be investigated. A novel experimental approach will be used, namely the nanowires will be coupled to a superconducting microwave Fabry-Perot resonator. Such a hybrid device will provide complementary experimental information when compared with traditional dc electrical transport measurements. The nanowires are expected to act as nonlinear kinetic inductors. This project will explore the possibility of using the hybrid nanowire-resonator devices as qubits. Such nanowire-qubits should be free of the decoherence mechanisms affecting Josephson tunnel junction so far employed for superconducting qubits. The nanowires will be fabricated and imaged by the most advanced nanotechnology. The measurements will be carried out using ultra-low-temperature refrigerators and ultra-low-noise microwave measurements. This project will support the education of graduate students in these advanced technologies, which will prepare them for scientific careers in academia and in our most advanced technology industries. Undergraduate students will also participate in the project, gaining training and hands-on experience in the most advanced scientific research. The project will also provide training to a postdoc. This research project receives support from the Division of Materials Research and the Physics Division.
* 非技术摘要 * 最近,很明显,传统上用于描述单个和小组基本粒子的量子力学(例如,电子和原子),也可以预测所谓的“介观”物体的行为,即包含大量原子的系统,如大分子或纳米器件。 该项目的目标是研究量子力学定律如何应用于纳米线。 这些纳米线是直径为几十亿分之一米的金属圆柱体。 该项目将探索由超导金属制成的纳米线。 要解决的科学问题是海森堡不确定性原理对涉及纳米线的纳米器件中的电流和电荷的适用性。 最先进的纳米科学和纳米技术将用于制造这种线。 纳米线的测量将使用一种新的实验方法进行,即纳米线将被插入一种特殊类型的微波谐振器,称为微波超导法布里-珀罗谐振器。 该项目将探索使用混合晶体管-谐振器设备作为量子比特的可能性,量子比特是在计算机中存储信息的经典“比特”的量子力学模拟。 该项目将支持这些先进技术的研究生教育,这将为他们在学术界和我们最先进的技术行业的科学生涯做好准备。 本科生也将参与该项目,获得最先进的科学研究的培训和实践经验。 该项目还将为博士后提供培训。 该研究项目得到了材料研究部和物理部的支持。*技术摘要 * 最近,人们清楚地认识到,对于所谓的介观系统,宏观自由度(如电流)可以通过量子力学定律来描述:例如,量子力学对于描述涉及大分子、纳米颗粒或超导纳米器件的系统中的输运测量结果很重要。 该项目的目标是研究宏观量子力学定律如何应用于超导纳米线。 特别是,量子相位滑移将被调查。 将使用一种新的实验方法,即纳米线将耦合到超导微波法布里-珀罗谐振器。 这样的混合装置将提供互补的实验信息时,与传统的直流电传输测量。 纳米线有望作为非线性动力学电感器。 本项目将探索使用混合谐振器-谐振器器件作为量子比特的可能性。 这样的超导量子比特应该没有影响约瑟夫森隧道结的退相干机制,迄今为止,这种退相干机制被用于超导量子比特。 纳米线将由最先进的纳米技术制造和成像。 测量将使用超低温冰箱和超低噪声微波测量进行。该项目将支持这些先进技术的研究生教育,这将为他们在学术界和我们最先进的技术行业的科学生涯做好准备。 本科生也将参与该项目,获得最先进的科学研究的培训和实践经验。 该项目还将为博士后提供培训。 该研究项目得到材料研究部和物理部的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexey Bezryadin其他文献

Reversed Photoeffect in Transparent Graphene Nanocapacitors
透明石墨烯纳米电容器中的反转光效应
  • DOI:
    10.1021/acsaelm.9b00659
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    A. Belkin;E. Ilin;I. Burkova;Alexey Bezryadin
  • 通讯作者:
    Alexey Bezryadin
Tunnelling across a nanowire
在纳米线上进行隧道掘进
  • DOI:
    10.1038/484324b
  • 发表时间:
    2012-04-18
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Alexey Bezryadin
  • 通讯作者:
    Alexey Bezryadin

Alexey Bezryadin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexey Bezryadin', 18)}}的其他基金

Zero energy modes in vortex cores: Spectroscopy and Majorana carousel braiding
涡核中的零能量模式:光谱学和马约拉纳旋转木马编织
  • 批准号:
    2104757
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
EAGER: BRAIDING: Multi-terminal Josephson circuits supporting nontrivial Chern topologies for anyonic qubits
EAGER:编织:多终端约瑟夫森电路支持任意子量子位的非平凡陈氏拓扑
  • 批准号:
    1836710
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and modeling of novel superconducting circuits with coherent phase slips
合作研究:具有相干相滑的新型超导电路的设计和建模
  • 批准号:
    1408558
  • 财政年份:
    2014
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CAREER: Quantum Properties of Ultrasmall Homogeneous Superconducting Nanostructures
职业:超小型均质超导纳米结构的量子特性
  • 批准号:
    0134770
  • 财政年份:
    2002
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
  • 批准号:
    2333102
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
  • 批准号:
    2331199
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
  • 批准号:
    2331200
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
  • 批准号:
    2331202
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
  • 批准号:
    2402729
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Multi-Lab Investigation of the Conceptual Foundations of Early Number Development
合作研究:早期数字发展概念基础的多实验室调查
  • 批准号:
    2405548
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
  • 批准号:
    2402728
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
  • 批准号:
    2333101
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134747
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了