AF: Medium: Collaborative Research: Fast and accurate optimization in planar graphs and beyond

AF:中:协作研究:平面图及其他领域的快速准确优化

基本信息

  • 批准号:
    1408763
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

A planar graph is a network drawn on the plane so that no edges cross. Planar and near-planar graphs have been fertile ground for algorithms research since the mid-1950s, both because they naturally model many classes of networks that arise in practice, and because they admit simpler and faster algorithms than more general graphs. Algorithms for such graphs find numerous applications in geographic information systems, computer graphics, solid modeling, computer vision, VLSI design, information visualization, finite-element mesh generation, computational geometry, and other areas. New techniques introduced in the last ten years have led to an explosion of new optimization algorithms for planar graphs and their generalizations, as well as the emergence of a small but growing research community that draws on and contributes to this pool of techniques; however, we are coming up against limitations of these techniques. The goal of this project is to develop efficient algorithms for several fundamental optimization problems in planar graphs and related graph families. Working on problems just outside the range of existing tools will lead the PIs toward developing the next batch of techniques that will maintain momentum in the field. Specific targets include faster and simpler exact algorithms for variants of shortest paths, maximum flows, minimum cuts, and minimum-cost flows, as well as new polynomial-time approximation schemes for several network design, clustering, and facility location problems for which no such schemes are currently known. The PIs will also implement and experimentally evaluate some algorithms that appear particularly promising, and make the resulting software publicly available, to support the efforts of students, researchers, and professionals in many different areas of computing.
平面图是在平面上绘制的没有交叉边的网络。自20世纪50年代中期以来,平面图和近平面图一直是算法研究的沃土,这既是因为它们自然地为实践中出现的许多类型的网络建模,也是因为它们比更一般的图允许更简单和更快的算法。这种图形的算法在地理信息系统、计算机图形学、实体建模、计算机视觉、超大规模集成电路设计、信息可视化、有限元网格生成、计算几何和其他领域都有许多应用。在过去十年中引入的新技术导致了平面图及其推广的新优化算法的爆炸式增长,以及一个小型但不断增长的研究社区的出现,该研究社区利用并贡献了这些技术池;然而,我们遇到了这些技术的局限性。本计划的目标是为平面图和相关图族的几个基本优化问题开发有效的算法。解决现有工具范围之外的问题将引导pi开发下一批技术,这些技术将在该领域保持势头。具体目标包括更快和更简单的精确算法,用于最短路径,最大流量,最小切割和最小成本流的变体,以及用于几种网络设计,聚类和设施定位问题的新的多项式时间近似方案,目前尚无此类方案。pi还将实现和实验评估一些看起来特别有前途的算法,并使结果软件公开可用,以支持学生、研究人员和许多不同计算领域的专业人员的努力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeff Erickson其他文献

Homotopic Fréchet distance between curves or, walking your dog in the woods in polynomial time
曲线之间的同伦 Fréchet 距离,或者在多项式时间内在树林里遛狗
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Chambers;Éric Colin de Verdière;Jeff Erickson;S. Lazard;F. Lazarus;Shripad Thite
  • 通讯作者:
    Shripad Thite
Building spacetime meshes over arbitrary spatial domains
在任意空间域上构建时空网格
  • DOI:
    10.1007/s00366-005-0303-0
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Jeff Erickson;Damrong Guoy;J. Sullivan;Alper Üngör
  • 通讯作者:
    Alper Üngör
Chasing Puppies: Mobile Beacon Routing on Closed Curves
追逐小狗:闭合曲线上的移动信标路由
  • DOI:
    10.4230/lipics.socg.2021.5
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Mikkel Abrahamsen;Jeff Erickson;I. Kostitsyna;Maarten Loffler;Tillmann Miltzow;Jérôme Urhausen;J. Vermeulen;G. Viglietta
  • 通讯作者:
    G. Viglietta
FSM Builder: A Tool for Writing Autograded Finite Automata Questions
FSM Builder:编写自动分级有限自动机问题的工具
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Robson;Samuel Ruggerio;Jeff Erickson
  • 通讯作者:
    Jeff Erickson
Fusible numbers and Peano Arithmetic
可熔数和皮亚诺算术

Jeff Erickson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeff Erickson', 18)}}的其他基金

Student Travel Support for SOCG 2013
SOCG 2013 学生旅行支持
  • 批准号:
    1342819
  • 财政年份:
    2013
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
AF:Small:Optimization in surface-embedded graphs
AF:Small:曲面嵌入图中的优化
  • 批准号:
    0915519
  • 财政年份:
    2009
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
MSPA-MCS: Fundamental Geodesic Problems in Computational Topology
MSPA-MCS:计算拓扑中的基本测地线问题
  • 批准号:
    0528086
  • 财政年份:
    2005
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAREER: Realistically Efficient Geometric Algorithms
职业:现实高效的几何算法
  • 批准号:
    0093348
  • 财政年份:
    2001
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9627683
  • 财政年份:
    1996
  • 资助金额:
    $ 55万
  • 项目类别:
    Fellowship Award
Student-Originated Studies
学生自主研究
  • 批准号:
    8003981
  • 财政年份:
    1980
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402852
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402837
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402835
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
  • 批准号:
    2423105
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Sketching for privacy and privacy for sketching
合作研究:AF:中:为隐私而素描和为素描而隐私
  • 批准号:
    2311649
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了