Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
基本信息
- 批准号:2402284
- 负责人:
- 金额:$ 59.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A graph is a collection of vertices (points or objects), and a collection of edges (links or lines), that connect pairs of vertices. Graphs are a central and an extensively studied type of mathematical object, and they are commonly used to model various problems in many different real world scenarios and applications. For example, it is natural to model a road network in a city, or a computer network, or friendship relationships in a social network as a graph. There are countless other scenarios where a problem one needs to solve, or an object one desires to study, can be naturally abstracted by a graph. As a consequence, the design of efficient algorithms for central graph problems is fundamental to computer science and beyond, and has a significant impact on many aspects of computation. As the amount of data that applications need to deal with grows, it is increasingly important to ensure that such algorithms are very fast. In this project, the investigators will study several central graph problems, such as Maximum Matching, Maximum Flow, and Shortest Paths, in two basic settings. The first is the standard model where the input graph is known in advance, and the goal is to design a fast algorithm for the problem, with running time not significantly higher than the time required to read the input, which is close to the fastest possible running time. The second is the model of dynamic algorithms, where the graph changes over time (for example, consider a road network, where the computation has to account for roads becoming more or less congested with traffic), and the goal is to quickly support queries about the graph, such as, for example, computing a short path between two given vertices. This project is organized along four main interconnected thrusts. The first thrust focuses on the design of algorithms for dynamic All-Pairs Shortest Paths (APSP), that can withstand an adaptive adversary, and that significantly improve upon the currently known tradeoffs between the approximation quality and the running time, in both directed and undirected graphs. Algorithms for APSP and its variants are often used in combination with the Multiplicative Weights Update framework to efficiently solve various flow and cut problems in graphs, and thus provide a valuable and powerful algorithmic toolkit. The second thrust is directed towards improving and extending known expander-related tools that are often used in the design of fast algorithms for various graph problems. Expanders are playing an increasingly central role in graph algorithms, and these tools can serve as building blocks for many other graph problems. The third thrust focuses on the Maximum Matching problem. Using techniques inspired by algorithms for dynamic shortest path in directed graphs, the goal of this part of the project is to develop fast combinatorial algorithms for both the bipartite and the general version of the problem. The final thrust focuses on designing improved algorithms for maintaining near-optimal matchings in dynamic graphs, building on insights and algorithms developed for the second and the third thrusts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图是连接顶点对的顶点(点或对象)的集合(点或对象),以及边缘(链接或行)的集合(链接或行)。图是一种中心和广泛研究的数学对象类型,它们通常用于在许多不同的现实世界场景和应用中对各种问题进行建模。例如,自然要在城市中的道路网络,计算机网络或社交网络中的友谊关系建模是很自然的。在其他情况下,一个人需要解决的问题,或者需要研究的对象可以自然地被图形抽象。因此,中央图问题的有效算法的设计是计算机科学及其他问题的基础,并且对计算的许多方面都有重大影响。 随着应用程序需要处理的数据数量的增长,确保此类算法非常快的速度越来越重要。在这个项目中,研究人员将在两个基本设置中研究几个中心图问题,例如最大匹配,最大流量和最短路径。第一个是预先知道输入图的标准模型,目标是为问题设计快速算法,运行时间不高于读取输入所需的时间,该输入接近最快的运行时间。第二个是动态算法的模型,其中图随时间变化(例如,考虑一个道路网络,计算必须说明道路变得或多或少被交通拥堵),其目标是快速支持有关图形的查询,例如,在两个给定的顶点之间计算一个短路径。该项目沿着四个主要相互连接的推力组织。第一个推力着重于动态全对最短路径(APSP)的算法设计,这些算法可以承受自适应对手,并且在有向质量和运行时间之间的当前已知的权衡方面可以显着改善定向和无方向的图表。 APSP及其变体的算法通常与乘法权重更新框架结合使用,以有效地解决图形中的各种流量和切割问题,从而提供了有价值且强大的算法工具包。第二个推力是针对改进和扩展已知的扩展器相关工具的,这些工具通常用于设计各种图形问题的快速算法。扩展器在图形算法中起着越来越重要的作用,这些工具可以作为许多其他图形问题的基础。第三个推力集中在最大匹配问题上。使用受算法启发的技术,用于有向图中的动态最短路径,该项目的目标是为双方和问题的一般版本开发快速组合算法。最终的推力重点是设计改进的算法,以在动态图中保持近乎最佳的匹配,这是基于第二和第三个推力为洞察力和算法而建立的。本奖反映了NSF的法定任务,并被认为是通过基金会的智力功能和广泛影响的评估来评估CRETERIA的评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjeev Khanna其他文献
Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs
子模超图类中保留割断的几乎紧界
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sanjeev Khanna;Aaron Putterman;Madhu Sudan - 通讯作者:
Madhu Sudan
Maximum Bipartite Matching in ?2+?(1) Time via a Combinatorial Algorithm
通过组合算法在 ?2+?(1) 时间内实现最大二分匹配
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Julia Chuzhoy;Sanjeev Khanna - 通讯作者:
Sanjeev Khanna
Palette Sparsification Beyond (∆ + 1) Vertex 1 Coloring 2
调色板稀疏化超出 (Δ + 1) 顶点 1 着色 2
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Noga Alon;Sepehr Assadi;Suman Bera;Amit Chakrabarti;Prantar Ghosh;Guru Guruganesh;David Harris;Sanjeev Khanna;Hsin - 通讯作者:
Hsin
Approximation algorithms for data placement on parallel disks
并行磁盘上数据放置的近似算法
- DOI:
10.1145/1597036.1597037 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
L. Golubchik;Sanjeev Khanna;Samir Khuller;R. Thurimella;An Zhu - 通讯作者:
An Zhu
Theory of Computing
计算理论
- DOI:
10.4086/toc - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana - 通讯作者:
Varun Suriyanarayana
Sanjeev Khanna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjeev Khanna', 18)}}的其他基金
AF: Small: Sublinear Algorithms for Flows, Matchings, and Routing Problems
AF:小:流、匹配和路由问题的次线性算法
- 批准号:
2008305 - 财政年份:2020
- 资助金额:
$ 59.94万 - 项目类别:
Standard Grant
AF: Small: Sublinear Algorithms for Graph Optimization Problems
AF:小:图优化问题的次线性算法
- 批准号:
1617851 - 财政年份:2016
- 资助金额:
$ 59.94万 - 项目类别:
Standard Grant
AF: EAGER: Small Space Algorithms and Representations for Graph Optimization Problems
AF:EAGER:图优化问题的小空间算法和表示
- 批准号:
1552909 - 财政年份:2015
- 资助金额:
$ 59.94万 - 项目类别:
Standard Grant
AF: Small: Cut, Flow, and Matching Problems in Graphs
AF:小:图中的切割、流动和匹配问题
- 批准号:
1116961 - 财政年份:2011
- 资助金额:
$ 59.94万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Optimization with Sparse Priors--Algorithms, Indices, and Economic Incentives
III:媒介:协作研究:稀疏先验优化——算法、指数和经济激励
- 批准号:
0904314 - 财政年份:2009
- 资助金额:
$ 59.94万 - 项目类别:
Continuing Grant
Effectiveness of problem based learning in a materials science course in the engineering curriculum
基于问题的学习在工程课程材料科学课程中的有效性
- 批准号:
0836914 - 财政年份:2009
- 资助金额:
$ 59.94万 - 项目类别:
Standard Grant
Collaborative Research: CT-T: DoS Prevention in Shared Channels
合作研究:CT-T:共享通道中的 DoS 预防
- 批准号:
0524269 - 财政年份:2005
- 资助金额:
$ 59.94万 - 项目类别:
Standard Grant
Acquisition of a Nanomechanical Testing Platform to Establish a User Center for Nanomecanical Characterization Materials
收购纳米力学测试平台,建立纳米力学表征材料用户中心
- 批准号:
0420859 - 财政年份:2004
- 资助金额:
$ 59.94万 - 项目类别:
Standard Grant
Development and Manufacturing of Highly Damage Resistant Fiber Glass Reinforced Window Panels for Buildings in Hurricane Prone Areas
为飓风多发地区的建筑物开发和制造高抗损伤玻璃纤维增强窗板
- 批准号:
0196428 - 财政年份:2001
- 资助金额:
$ 59.94万 - 项目类别:
Continuing Grant
相似国自然基金
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
- 批准号:82300739
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
- 批准号:82370157
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
间充质干细胞微粒通过U2AF1负调控pDC活化改善系统性红斑狼疮的机制研究
- 批准号:82302029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
circPOLB-MYC-U2AF2正反馈环路上调FSCN1促进舌鳞状细胞癌进展的作用研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
tsRNA-14765结合U2AF2抑制巨噬细胞自噬调节铁死亡对动脉粥样硬化的影响及机制研究
- 批准号:82270494
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 59.94万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 59.94万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 59.94万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 59.94万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 59.94万 - 项目类别:
Standard Grant