Investigation of High Strain-Rate Deformation and Failure of FCC and BCC Nanostructures

FCC 和 BCC 纳米结构的高应变率变形和失效研究

基本信息

  • 批准号:
    1408901
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2020-01-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL DESCRIPTION: Nanostructures such as nanowires and nanotubes are envisioned to play a critical role in the next generation of advanced materials for energy, electronic devices, and nano-electromechanical systems. This broad technological applicability has elicited a demand for extensive characterization of the fundamental properties of nanostructures, yet previous studies have neglected to characterize these materials under high strain-rate conditions. This project involves characterizing the mechanical properties of metallic nanowires at high strain rates using transmission electron microscopy and developing new theoretical models to understand the relationship between the structure of the nanowires and their mechanical properties. This fundamental research provides opportunities to develop new educational modules on the subject of mechanical properties testing and stimulates new innovations in the design and manufacture of high performing robust nanoscale devices. As well, training of a graduate student and post-doctoral associate is an inherent part of this research.TECHNICAL DETAILS: The goal of this research project is to explore for the first time the mechanical response of sub-150 nm-diameter metallic nanowires at high strain rates (up to 10^5 /s) to elucidate the structure-property relationships of nanostructures at high strain rates. To this end, nanowires are experimentally characterized by augmenting microelectromechanical systems (MEMS) mechanical characterization platforms with capabilities for in situ transmission electron microscopy (TEM) testing. The newly designed MEMS platforms with piezoelectric-based actuation and reduced mass are designed to attain strain rates up to 10^5/s. This testing is coupled to dynamic, high-speed TEM (DTEM) in order to obtain high speed imaging of the deformation and failure processes. These state-of the-art experimental techniques yield significant insights toward the understanding of high-strain rate mechanical behavior of metallic nanowires, dislocation processes in confined geometries, and validation of interatomic potentials for molecular dynamics (MD)-based modeling of metals. This validation is extremely beneficial to atomistic modeling, not only for mechanical characterization, but for a breadth of scientific disciplines where MD simulations are used to gain insights into chemical, electrical, and thermal material behavior.
非技术描述:预计纳米线和纳米管等纳米结构将在下一代能源、电子设备和纳米机电系统先进材料中发挥关键作用。这种广泛的技术适用性引发了对纳米结构基本特性进行广泛表征的需求,但之前的研究忽略了在高应变率条件下表征这些材料。该项目涉及使用透射电子显微镜表征金属纳米线在高应变率下的机械性能,并开发新的理论模型以了解纳米线的结构与其机械性能之间的关系。这项基础研究为开发有关机械性能测试的新教育模块提供了机会,并激发了高性能稳健纳米级设备设计和制造的新创新。 此外,对研究生和博士后的培训也是本研究的固有组成部分。 技术细节:本研究项目的目标是首次探索亚 150 nm 直径金属纳米线在高应变率(高达 10^5 /s)下的机械响应,以阐明纳米结构在高应变率下的结构-性能关系。为此,通过增强具有原位透射电子显微镜 (TEM) 测试功能的微机电系统 (MEMS) 机械表征平台来对纳米线进行实验表征。新设计的 MEMS 平台采用基于压电的驱动和减少的质量,旨在实现高达 10^5/s 的应变率。该测试与动态高速 TEM (DTEM) 相结合,以获得变形和失效过程的高速成像。这些最先进的实验技术为理解金属纳米线的高应变率机械行为、受限几何形状中的位错过程以及基于分子动力学 (MD) 的金属建模的原子间势的验证提供了重要的见解。这种验证对于原子建模极其有益,不仅适用于机械表征,而且适用于使用分子动力学模拟来深入了解化学、电气和热材料行为的广泛科学学科。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Horacio Espinosa其他文献

Micro and nanotechnology for biological and biomedical applications
  • DOI:
    10.1007/s11517-010-0677-z
  • 发表时间:
    2010-09-16
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Chwee Teck Lim;Jongyoon Han;Jochen Guck;Horacio Espinosa
  • 通讯作者:
    Horacio Espinosa

Horacio Espinosa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Horacio Espinosa', 18)}}的其他基金

An Atomistic Experimental Investigation of Fracture in Transitional Metal Dichalcogenides
过渡金属二硫化物断裂的原子实验研究
  • 批准号:
    1953806
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
DMREF: A Fundamental Approach to Study the Effect of Structural and Chemical Composition in Functionalized Graphene Materials
DMREF:研究功能化石墨烯材料结构和化学成分影响的基本方法
  • 批准号:
    1235480
  • 财政年份:
    2012
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Deformation and Fracture of Metallic Nanostructures - In-situ TEM Experiments and Atomistic Models
金属纳米结构的变形和断裂 - 原位 TEM 实验和原子模型
  • 批准号:
    0907196
  • 财政年份:
    2009
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Tunneling CNT Device for Electronic and Sensing Applications
用于电子和传感应用的隧道 CNT 器件
  • 批准号:
    0555734
  • 财政年份:
    2007
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Pan-American Advanced Studies Institute on Nano and Biotechnology; San Carlos de Bariloche, Argentina; November 2006
泛美纳米和生物技术高级研究所;
  • 批准号:
    0518782
  • 财政年份:
    2005
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Understanding What Makes Nacre Strong and Tough --Development of New Bioinspired Nanocomposites
了解珍珠质坚固耐用的原因——新型仿生纳米复合材料的开发
  • 批准号:
    0301416
  • 财政年份:
    2003
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Development and Acquisition of Instrumentation for Nanomechanics Research and Education
纳米力学研究和教育仪器的开发和采购
  • 批准号:
    0315561
  • 财政年份:
    2003
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Micro Scale Experiments and Modeling of MEMS RF-Switches
MEMS 射频开关的微尺度实验和建模
  • 批准号:
    0120866
  • 财政年份:
    2001
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
CAREER: Tribo-Mechanics of Nanostructured Materials
职业:纳米结构材料的摩擦力学
  • 批准号:
    0096180
  • 财政年份:
    2000
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
CAREER: Tribo-Mechanics of Nanostructured Materials
职业:纳米结构材料的摩擦力学
  • 批准号:
    9624364
  • 财政年份:
    1996
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant

相似国自然基金

固定化Ochrobactrum sp. strain FJ1@Fe NPs协同去除水中内分泌干扰物17-雌二醇的机制
  • 批准号:
    2022J01649
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Pseudomonas sp. strain JS3051分解代谢2,3-二氯硝基苯的机理研究
  • 批准号:
    31900075
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
基于Rhodococcus sp. strain p52二噁英降解质粒接合转移的二噁英污染的基因强化修复机制研究
  • 批准号:
    21876100
  • 批准年份:
    2018
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
古菌Haloferax sp. strain D1227 通过龙胆酸分解代谢3-苯丙酸的分子机理研究
  • 批准号:
    31570100
  • 批准年份:
    2015
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
Alcaligenes faecalis strain NR 异养脱氮途径及其酶调控机制
  • 批准号:
    51208534
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Investigating the Role of Microstructure in the High Strain Rate Behavior of Stable Nanocrystalline Alloys
职业:研究微观结构在稳定纳米晶合金高应变率行为中的作用
  • 批准号:
    2338296
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Quartz grain-boundary topology as a stress and strain-rate meter and a new flow law
石英晶界拓扑作为应力和应变率计以及新的流动定律
  • 批准号:
    2243658
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Modelling the deformation and failure of sheet metal in high-strain rate forming
对高应变率成形中金属板材的变形和失效进行建模
  • 批准号:
    RGPIN-2017-05956
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Characterization of the Strain Rate-Dependent Mechanical Behavior of the Cell-Cell Adhesion Interface
职业:细胞-细胞粘附界面应变率依赖性机械行为的表征
  • 批准号:
    2143997
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
High strain rate characteristics of wood arising from blast and impact loading
爆炸和冲击载荷引起的木材高应变率特性
  • 批准号:
    RGPIN-2019-05612
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Grants Program - Individual
Development of new microstructure control method based on visualization of plastic deformation under non-uniform temperature strain rate fields
基于非均匀温度应变率场下塑性变形可视化的新型微观结构控制方法的开发
  • 批准号:
    20KK0321
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Modeling of soft materials subjected to high strain rate deformation
高应变率变形软材料的建模
  • 批准号:
    580284-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Alliance Grants
Thermomechanical aspect and high-strain rate behavior of next generation advanced high-strength materials
下一代先进高强度材料的热机械方面和高应变率行为
  • 批准号:
    RGPIN-2019-04006
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling the deformation and failure of sheet metal in high-strain rate forming
对高应变率成形中金属板材的变形和失效进行建模
  • 批准号:
    RGPIN-2017-05956
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Understanding of Non-Equilibrium Surface-Layer Stress-Strain-Rate Relationships Using a Novel Stationarity-Analysis Technique and Large-Eddy Simulation
使用新颖的平稳性分析技术和大涡模拟提高对非平衡表面层应力-应变-速率关系的理解
  • 批准号:
    2113854
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了