RI: Medium: Deep Annotation: Measuring Human Vision to Improve Machine Vision
RI:中:深度注释:测量人类视觉以改善机器视觉
基本信息
- 批准号:1409097
- 负责人:
- 金额:$ 67.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning is the science of designing computational systems that can learn from data, much as humans do. However, while many machine learning approaches rely on humans to provide labels for training examples that are used for learning, human-provided labels represent just a tiny fraction of the information that can be gleaned from humans. This project brings together a multidisciplinary team with expertise spanning computer science, neuroscience and psychology to pioneer a new paradigm in machine learning that seeks to better mimic human performance by incorporating new kinds of information about human behavior. Specifically, this project brings the disciplines of psychophysics and psychometrics, which seek to quantitatively describe human performance -- patterns of errors, reaction times, and variations across populations of humans -- together with machine learning to develop systems that learn both from human successes and failures, to generate artificial systems that perform better and generalize better to data outside of their training sets. The project team has already shown initial proof of concept in applying these ideas to the problem of face detection in difficult, cluttered real-world images. During the project period, the team will greatly expand these ideas, developing new applications (including face and object recognition tasks), a broader range of machine learning settings (including regression and feature selection), and methods for incorporating new kinds of data (such as fMRI brain scans) for guiding machine learning algorithms. This research represents a new direction in machine learning research, which increasingly has important and broad impact in our modern, data-driven world. In addition, it is anticipated that the theoretical gains in machine learning derived from this work will feed back into psychology, enabling rapid screening of candidate hypotheses about how the brain works by artificial systems which can then be tested on humans using an advanced crowdsourcing platform for quantifying human behavior.
机器学习是设计计算系统的科学,可以像人类一样从数据中学习。 然而,虽然许多机器学习方法依赖于人类为用于学习的训练示例提供标签,但人类提供的标签仅代表可以从人类收集的信息的一小部分。 该项目汇集了一支拥有计算机科学、神经科学和心理学专业知识的多学科团队,开创了机器学习的新范式,旨在通过整合有关人类行为的新型信息来更好地模仿人类表现。 具体来说,这个项目带来了心理物理学和心理测量学的学科,这些学科试图定量描述人类的表现-错误模式,反应时间和人类群体之间的变化-与机器学习一起开发从人类成功和失败中学习的系统,以生成表现更好的人工系统,并更好地概括训练集之外的数据。 项目团队已经展示了将这些想法应用于困难,混乱的现实世界图像中的人脸检测问题的初步概念证明。 在项目期间,该团队将大大扩展这些想法,开发新的应用程序(包括人脸和物体识别任务),更广泛的机器学习设置(包括回归和特征选择),以及整合新类型数据(如fMRI脑部扫描)的方法,以指导机器学习算法。 这项研究代表了机器学习研究的一个新方向,它在我们现代数据驱动的世界中越来越具有重要和广泛的影响。 此外,预计从这项工作中获得的机器学习的理论收益将反馈到心理学中,从而能够快速筛选人工系统关于大脑如何工作的候选假设,然后使用先进的众包平台对人类进行测试,以量化人类行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Cox其他文献
Revealing sequence variation patterns in rice with machine learning methods
用机器学习方法揭示水稻的序列变异模式
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:3
- 作者:
Regina Bohnert;G. Zeller;Richard M. Clark;K. Childs;V. J. Ulat;R. Stokowski;D. Ballinger;K. Frazer;David Cox;R. Bruskiewich;C. R. Buell;J. Leach;H. Leung;Kenneth L. McNally;D. Weigel;G. Rätsch - 通讯作者:
G. Rätsch
Gender disparities in HIV risk behavior and access to health care in St. Petersburg, Russia.
俄罗斯圣彼得堡艾滋病毒危险行为和获得医疗保健方面的性别差异。
- DOI:
10.1089/apc.2013.0019 - 发表时间:
2013 - 期刊:
- 影响因子:4.9
- 作者:
C. Vasquez;Dmitry Lioznov;S. Nikolaenko;Sergey Yatsishin;Dar'ya Lesnikova;David Cox;J. Pankovich;R. Rosenes;W. Wobeser;C. Cooper - 通讯作者:
C. Cooper
Navigating the perfect [data] storm
驾驭完美的[数据]风暴
- DOI:
10.5324/nje.v21i2.1495 - 发表时间:
2012 - 期刊:
- 影响因子:3.6
- 作者:
M. Murtagh;Gudmundur A. Thorisson;S. Wallace;J. Kaye;I. Demir;I. Fortier;J. Harris;David Cox;M. Deschenes;Phillippe Laflamme;Vincent Ferretti;N. Sheehan;T. Hudson;A. C. Thomsen;R. Stolk;B. Knoppers;A. Brookes;P. Burton - 通讯作者:
P. Burton
International STEM Classrooms: The Experiences of Students Around the World Using Physical Remote Laboratory Kits
国际 STEM 课堂:世界各地学生使用物理远程实验室套件的体验
- DOI:
10.18260/1-2--17146 - 发表时间:
2015 - 期刊:
- 影响因子:3
- 作者:
S. Atiq;S. Zahra;Xin Chen;David Cox;Jennifer DeBoer - 通讯作者:
Jennifer DeBoer
TCT-23 Etiology, Frequency, and Clinical Outcomes of Post-procedural Myocardial Infarction After Successful Drug-Eluting Stent Implantation: Two-Year Follow-up From the ADAPT-DES Study
- DOI:
10.1016/j.jacc.2014.07.048 - 发表时间:
2014-09-16 - 期刊:
- 影响因子:
- 作者:
Tomotaka Dohi;Akiko Maehara;Bernhard Witzenbichler;D. Christopher Metzger;Michael Rinaldi;Ernest L. Mazzaferri;Franz-Josef Neumann;Timothy D. Henry;David Cox;Ke Xu;Sorin Brener;Ajay J. Kirtane;Gary S. Mintz;Gregg W. Stone - 通讯作者:
Gregg W. Stone
David Cox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Cox', 18)}}的其他基金
I-Corps: Honest Signals-Machine Learning for Job Candidate Assessment
I-Corps:用于求职者评估的诚实信号-机器学习
- 批准号:
1511655 - 财政年份:2015
- 资助金额:
$ 67.41万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Unlocking Biologically-Inspired Computer Vision: A High-Throughput Approach
RI:媒介:协作研究:解锁受生物学启发的计算机视觉:一种高通量方法
- 批准号:
0963668 - 财政年份:2010
- 资助金额:
$ 67.41万 - 项目类别:
Standard Grant
A Novel Rodent Model for the Neurophysiology of Visual Object Recognition
用于视觉对象识别神经生理学的新型啮齿动物模型
- 批准号:
0947777 - 财政年份:2009
- 资助金额:
$ 67.41万 - 项目类别:
Continuing Grant
Mathematical Sciences: Valley Geometry Seminar
数学科学:山谷几何研讨会
- 批准号:
9401642 - 财政年份:1994
- 资助金额:
$ 67.41万 - 项目类别:
Standard Grant
Mathematical Sciences: RUI: Geometry of Toric Varieties
数学科学:RUI:环面簇的几何
- 批准号:
9301161 - 财政年份:1993
- 资助金额:
$ 67.41万 - 项目类别:
Standard Grant
Fourier-Transform Infrared Spectrometer for Infrared Reflection-Absorption Spectroscopy (IRAS)
用于红外反射吸收光谱 (IRAS) 的傅里叶变换红外光谱仪
- 批准号:
9112369 - 财政年份:1991
- 资助金额:
$ 67.41万 - 项目类别:
Standard Grant
Mathematical Sciences: Valley Geometry Seminar
数学科学:山谷几何研讨会
- 批准号:
8906769 - 财政年份:1989
- 资助金额:
$ 67.41万 - 项目类别:
Standard Grant
A Model for Studying Natural Phenomena Using Mt. St. Helens
利用圣海伦斯山研究自然现象的模型
- 批准号:
8751850 - 财政年份:1988
- 资助金额:
$ 67.41万 - 项目类别:
Standard Grant
Partial Oxidation of Propylene to Acrolein over Single-Crystal Cuprous Oxide
单晶氧化亚铜上丙烯部分氧化为丙烯醛
- 批准号:
8708076 - 财政年份:1987
- 资助金额:
$ 67.41万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 67.41万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 67.41万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 67.41万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: MoDL: Occams Razor in Deep and Physical Learning
合作研究:RI:媒介:MoDL:深度学习和物理学习中的奥卡姆斯剃刀
- 批准号:
2212519 - 财政年份:2022
- 资助金额:
$ 67.41万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: MoDL: Occams Razor in Deep and Physical Learning
合作研究:RI:媒介:MoDL:深度学习和物理学习中的奥卡姆斯剃刀
- 批准号:
2212520 - 财政年份:2022
- 资助金额:
$ 67.41万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Flexible Deep Speech Synthesis through Gestural Modeling
合作研究:RI:Medium:通过手势建模进行灵活的深度语音合成
- 批准号:
2106928 - 财政年份:2021
- 资助金额:
$ 67.41万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Flexible Deep Speech Synthesis through Gestural Modeling
合作研究:RI:Medium:通过手势建模进行灵活的深度语音合成
- 批准号:
2106930 - 财政年份:2021
- 资助金额:
$ 67.41万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Flexible Deep Speech Synthesis through Gestural Modeling
合作研究:RI:Medium:通过手势建模进行灵活的深度语音合成
- 批准号:
2106929 - 财政年份:2021
- 资助金额:
$ 67.41万 - 项目类别:
Standard Grant
AF: RI: Medium: Collaborative Research: Understanding and Improving Optimization in Deep and Recurrent Networks
AF:RI:中:协作研究:理解和改进深度和循环网络的优化
- 批准号:
1764032 - 财政年份:2018
- 资助金额:
$ 67.41万 - 项目类别:
Standard Grant
AF: RI: Medium: Collaborative Research: Understanding and Improving Optimization in Deep and Recurrent Networks
AF:RI:中:协作研究:理解和改进深度和循环网络的优化
- 批准号:
1763562 - 财政年份:2018
- 资助金额:
$ 67.41万 - 项目类别:
Standard Grant














{{item.name}}会员




