AF: Medium: Collaborative Research: Multi-dimensional Scheduling and Resource Allocation in Data Centers
AF:中:协同研究:数据中心多维调度与资源分配
基本信息
- 批准号:1409130
- 负责人:
- 金额:$ 39.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Data centers and cluster computing platforms have become the dominant computational paradigms of the past decade, becoming the de facto method of executing Big Data workloads. Typically, the entire cluster is treated as a set of resources shared by multiple clients who submit jobs requiring different types of resources. To add to this heterogeneity (or dimensionality) in resource requirements, machines in a cluster can be heterogeneous in terms of resources they provide. In such settings, resources need to be allocated and priced appropriately so as to balance performance with demand.In this project, the PIs seek to study job scheduling in data centers to optimize temporal Quality of Service metrics such as response time along with fairness, when jobs can have resource requirements that are multi-dimensional. The main question studied can be phrased as: How does the temporal nature of job scheduling interplay with the dimensionality of resource requirements, and how do these two in turn interact with the classical economic desiderata of incentives and fairness?This project is differentiated from previous work in aiming to develop appropriate models and algorithms through the lens of theoretical computer science, particularly by a fusion of the disparate fields of approximation and online algorithms, algorithmic game theory, and stochastic optimization. The resulting insights will be used to also develop new techniques to address classical scheduling and game theoretic problems that have defied successful solutions. The project is interdisciplinary, and the theoretical models and techniques developed will be motivated by the application domain of new hardware architectures stemming from emerging technologies, and the heterogeneity arising from provisioning them within a data center. Further, empirical validations will be performed, both via simulation on traces from data center executions, as well as deployment and experiments on clusters. This will ultimately influence the design and deployment of internet systems that use and generate massive data.The interdisciplinary nature of the project points to not only the need for training a pipeline of students from high school students to graduates and imparting to them the power of algorithmic thinking and its broader relevance, but also the necessity for bringing scientists, mathematicians, and system builders to the same platform for active exchange of ideas. Towards this end, the PIs seek to equip the next generation of students, including women and minorities, with the relevant algorithmic skills by an education plan that includes effective teaching and mentorship, as well as to broadly disseminate the proposed work by organizing workshops and by writing books and surveys.
数据中心和集群计算平台已经成为过去十年中占主导地位的计算范式,成为执行大数据工作负载的事实上的方法。通常,整个集群被视为由多个客户机共享的一组资源,这些客户机提交需要不同类型资源的作业。为了增加资源需求的异构性(或维度),集群中的机器就其提供的资源而言可以是异构的。在这种情况下,需要适当地分配和定价资源,以平衡绩效与需求。在这个项目中,pi试图研究数据中心中的作业调度,以优化时间服务质量指标,如响应时间和公平性,当作业可能具有多维资源需求时。研究的主要问题可以概括为:工作调度的时间性质如何与资源需求的维度相互作用,这两者又如何与激励和公平的经典经济学愿望相互作用?该项目与之前的工作不同,旨在通过理论计算机科学的视角开发适当的模型和算法,特别是通过融合近似和在线算法、算法博弈论和随机优化等不同领域。由此产生的见解也将用于开发新的技术来解决经典的调度和博弈论问题,这些问题没有成功的解决方案。该项目是跨学科的,所开发的理论模型和技术将受到源于新兴技术的新硬件架构的应用领域的激励,以及在数据中心内提供它们所产生的异质性。此外,还将通过对数据中心执行轨迹的模拟以及对集群的部署和实验进行经验验证。这将最终影响使用和产生大量数据的互联网系统的设计和部署。该项目的跨学科性质不仅表明需要培养从高中生到毕业生的学生管道,并向他们传授算法思维的力量及其更广泛的相关性,而且还需要将科学家,数学家和系统构建者带到同一个平台上积极交流思想。为此目的,ppi寻求通过一项包括有效教学和指导在内的教育计划,使包括妇女和少数民族在内的下一代学生掌握相关的算法技能,并通过组织讲习班和编写书籍和调查广泛传播拟议的工作。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Weighted Completion Time Minimization for Unrelated Machines via Iterative Fair Contention Resolution
- DOI:10.1137/1.9781611975994.170
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Sungjin Im;Maryam Shadloo
- 通讯作者:Sungjin Im;Maryam Shadloo
Instance Optimal Join Size Estimation
实例最佳连接大小估计
- DOI:10.1016/j.procs.2021.11.019
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Abo-Khamis, Mahmoud;Im, Sungjin;Moseley, Benjamin;Pruhs, Kirk;Samadian, Alireza
- 通讯作者:Samadian, Alireza
Online Two-Dimensional Load Balancing
在线二维负载均衡
- DOI:10.4230/lipics.icalp.2020.34
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Cohen, Ilan;Im, Sungjin;Panigrahi, Debmalya
- 通讯作者:Panigrahi, Debmalya
Dynamic Weighted Fairness with Minimal Disruptions
动态加权公平,干扰最小
- DOI:10.1145/3379485
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Im, Sungjin;Moseley, Benjamin;Munagala, Kamesh;Pruhs, Kirk
- 通讯作者:Pruhs, Kirk
Hallucination Helps: Energy Efficient Virtual Circuit Routing
幻觉有帮助:节能虚拟电路路由
- DOI:10.1137/18m1228591
- 发表时间:2020
- 期刊:
- 影响因子:1.6
- 作者:Antoniadis, Antonios;Im, Sungjin;Krishnaswamy, Ravishankar;Moseley, Benjamin;Nagarajan, Viswanath;Pruhs, Kirk;Stein, Clifford
- 通讯作者:Stein, Clifford
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sungjin Im其他文献
Online scalable scheduling for the lk-norms of flow time without conservation of work
无需工作保护的 lk 范数在线可扩展调度
- DOI:
10.1137/1.9781611973082.9 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
J. Edmonds;Sungjin Im;Benjamin Moseley - 通讯作者:
Benjamin Moseley
Online scheduling algorithms for average flow time and its variants
- DOI:
- 发表时间:
2012-09 - 期刊:
- 影响因子:0
- 作者:
Sungjin Im - 通讯作者:
Sungjin Im
Competitively scheduling tasks with intermediate parallelizability
具有中等并行性的竞争性调度任务
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Sungjin Im;Benjamin Moseley;K. Pruhs;E. Torng - 通讯作者:
E. Torng
Coordination mechanisms from (almost) all scheduling policies
来自(几乎)所有调度策略的协调机制
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Sayan Bhattacharya;Sungjin Im;Janardhan Kulkarni;Kamesh Munagala - 通讯作者:
Kamesh Munagala
New Approximations for Reordering Buffer Management
重新排序缓冲区管理的新近似值
- DOI:
10.1137/1.9781611973402.81 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Sungjin Im;Benjamin Moseley - 通讯作者:
Benjamin Moseley
Sungjin Im的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sungjin Im', 18)}}的其他基金
Collaborative Research: AF: Small: Foundations of Algorithms Augmented with Predictions
合作研究:AF:小型:预测增强的算法基础
- 批准号:
2121745 - 财政年份:2022
- 资助金额:
$ 39.02万 - 项目类别:
Standard Grant
CAREER: New Algorithmic Foundations for Online Scheduling
职业:在线调度的新算法基础
- 批准号:
1844939 - 财政年份:2019
- 资助金额:
$ 39.02万 - 项目类别:
Continuing Grant
AF: Small: Collaborative Research: Algorithmic and Computational Frontiers of MapReduce for Big Data Analysis
AF:小型:协作研究:用于大数据分析的 MapReduce 算法和计算前沿
- 批准号:
1617653 - 财政年份:2016
- 资助金额:
$ 39.02万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 39.02万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 39.02万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 39.02万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
$ 39.02万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402852 - 财政年份:2024
- 资助金额:
$ 39.02万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402284 - 财政年份:2024
- 资助金额:
$ 39.02万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402837 - 财政年份:2024
- 资助金额:
$ 39.02万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402835 - 财政年份:2024
- 资助金额:
$ 39.02万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
- 批准号:
2423105 - 财政年份:2024
- 资助金额:
$ 39.02万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Sketching for privacy and privacy for sketching
合作研究:AF:中:为隐私而素描和为素描而隐私
- 批准号:
2311649 - 财政年份:2023
- 资助金额:
$ 39.02万 - 项目类别:
Continuing Grant