III: Medium: Collaborative Research: Closing the User-Model Loop for Understanding Topics in Large Document Collections
III:媒介:协作研究:关闭用户模型循环以理解大型文档集合中的主题
基本信息
- 批准号:1409287
- 负责人:
- 金额:$ 65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Individuals and organizations must cope with massive amounts of unstructured text information: individuals sifting through a lifetime of e-mail and documents, journalists understanding the activities of government organizations, companies reacting to what people say about them online, or scholars making sense of digitized documents from the ancient world. This project's research goal is to bring together two previously disconnected components of how users understand this deluge of data: algorithms to sift through the data and interfaces to communicate the results of the algorithms. This project will allow users to provide feedback to algorithms that were typically employed on a "take it or leave it" basis: if the algorithm makes a mistake or misunderstands the data, users can correct the problem using an intuitive user interface and improve the underlying analysis. This project will jointly improve both the algorithms and the interfaces, leading to deeper understanding of, faster introduction to, and greater trust in the algorithms we rely on to understand massive textual datasets. The resulting source code and functional demos will be broadly disseminated, and tutorials will be shared online and in person in educational efforts and to aid the adoption of the methodologies.This project enables computer algorithms and humans to apply their respective strengths and collaborate in managing and making sense of large volumes of textual data. It "closes the loop" in novel ways to connect users with a class of big data analysis algorithms called topic models. This connection is made through interfaces that empower the user to change the underlying models by refining the number and granularity of topics, adding or removing words considered by the model, and adding constraints on what words appear together in topics. The underlying model also enables new visualizations in the form of a Metadata Map that uses active learning to focus users' limited attention on the most important documents in a collection. Users annotate documents with useful meta-data and thereby further improve the quality of the discovered topics. The project includes evaluations of these methods through careful user studies and in-depth case studies to demonstrate that topics are more coherent, users can more quickly provide annotations, users trust the underlying algorithms more, and users can more effectively build an understanding of their textual data. The project web site (http://nlp.cs.byu.edu/closing-the-loop) will include pointers to the project Git repositories for source code, project demos, tutorials, and publications communicating experimental results.
个人和组织必须处理海量的非结构化文本信息:筛选一生的电子邮件和文件的个人,了解政府组织活动的记者,对人们在网上发表的评论做出反应的公司,或者理解古代世界数字化文件的学者。该项目的研究目标是将用户如何理解这一海量数据的两个以前互不相连的组成部分结合在一起:筛选数据的算法和交流算法结果的接口。该项目将允许用户向算法提供反馈,这些算法通常是在“接受或放弃”的基础上使用的:如果算法出错或误解了数据,用户可以使用直观的用户界面纠正问题,并改进潜在的分析。该项目将共同改进算法和界面,使我们对理解海量文本数据集所依赖的算法有更深入的理解、更快的介绍和更大的信任。由此产生的源代码和功能演示将被广泛传播,教程将在教育工作中在线和面对面分享,并帮助采用这些方法。该项目使计算机算法和人类能够发挥各自的优势,在管理和理解大量文本数据方面进行合作。它以一种新颖的方式将用户与一类名为主题模型的大数据分析算法联系起来。这种连接是通过界面实现的,这些界面使用户能够通过细化主题的数量和粒度、添加或删除模型考虑的单词以及添加对主题中一起出现的单词的约束来更改底层模型。底层模型还支持元数据映射形式的新可视化,该映射使用主动学习将用户有限的注意力集中在集合中最重要的文档上。用户用有用的元数据标注文档,从而进一步提高发现主题的质量。该项目包括通过仔细的用户研究和深入的案例研究对这些方法进行评估,以证明主题更连贯,用户可以更快地提供注释,用户更信任底层算法,用户可以更有效地建立对文本数据的理解。项目网站(http://nlp.cs.byu.edu/closing-the-loop)将包括指向项目Git存储库的指针,以获取源代码、项目演示、教程和交流实验结果的出版物。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Which Evaluations Uncover Sense Representations that Actually Make Sense?
哪些评估揭示了真正有意义的意义表征?
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Jordan Boyd-Graber, Fenfei Guo
- 通讯作者:Jordan Boyd-Graber, Fenfei Guo
Why Didn’t You Listen to Me? Comparing User Control of Human-in-the-Loop Topic Models
- DOI:10.18653/v1/p19-1637
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Varun Kumar;Alison Smith-Renner;Leah Findlater;Kevin Seppi;Jordan L. Boyd-Graber
- 通讯作者:Varun Kumar;Alison Smith-Renner;Leah Findlater;Kevin Seppi;Jordan L. Boyd-Graber
No Explainability without Accountability: An Empirical Study of Explanations and Feedback in Interactive ML
没有责任就没有可解释性:交互式机器学习中解释和反馈的实证研究
- DOI:10.1145/3313831.3376624
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Smith-Renner, Alison;Fan, Ron;Birchfield, Melissa;Wu, Tongshuang;Boyd-Graber, Jordan;Weld, Daniel S.;Findlater, Leah
- 通讯作者:Findlater, Leah
Automatic Evaluation of Local Topic Quality
- DOI:10.18653/v1/p19-1076
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Jeffrey Lund;Piper Armstrong;Wilson Fearn;Stephen Cowley;Courtni Byun;Jordan L. Boyd-Graber;Kevin Seppi
- 通讯作者:Jeffrey Lund;Piper Armstrong;Wilson Fearn;Stephen Cowley;Courtni Byun;Jordan L. Boyd-Graber;Kevin Seppi
Digging into user control: perceptions of adherence and instability in transparent models
深入研究用户控制:透明模型中对依从性和不稳定性的看法
- DOI:10.1145/3377325.3377491
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Smith-Renner, Alison;Kumar, Varun;Boyd-Graber, Jordan;Seppi, Kevin;Findlater, Leah
- 通讯作者:Findlater, Leah
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jordan Boyd-Graber其他文献
SITS: A Hierarchical Nonparametric Model using Speaker Identity for Topic Segmentation in Multiparty Conversations
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jordan Boyd-Graber - 通讯作者:
Jordan Boyd-Graber
Jordan Boyd-Graber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jordan Boyd-Graber', 18)}}的其他基金
CAREER: Human-Computer Cooperation for Word-by-Word Question Answering
职业:人机合作逐字问答
- 批准号:
1822494 - 财政年份:2017
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
CAREER: Human-Computer Cooperation for Word-by-Word Question Answering
职业:人机合作逐字问答
- 批准号:
1652666 - 财政年份:2017
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
Collaborative Research: Scaling Insight into Science: Assessing the value and effectiveness of machine assisted classification within a statistical system
协作研究:扩展对科学的洞察力:评估统计系统内机器辅助分类的价值和有效性
- 批准号:
1422492 - 财政年份:2014
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
ACL 2014 Student Research Workshop
ACL 2014 学生研究研讨会
- 批准号:
1422020 - 财政年份:2014
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
RI: Small: Bayesian Thinking on Your Feet---Embedding Generative Models in Reinforcement Learning for Sequentially Revealed Data
RI:小:贝叶斯思维在你的脚上——将生成模型嵌入到连续显示数据的强化学习中
- 批准号:
1320538 - 财政年份:2013
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2406648 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Standard Grant