RI: Medium: Collaborative Research: Experience-Based Planning: A Framework for Lifelong Planning
RI:媒介:协作研究:基于经验的规划:终身规划框架
基本信息
- 批准号:1409549
- 负责人:
- 金额:$ 34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Robots need to improve their behavior over time, yet produce consistent behavior in order to allow humans to predict their actions, which is necessary to develop trust in their behavior or even cooperate with them. Furthermore, many tasks repeat, such as opening drawers. This project develops technology that addresses these issues by viewing planning as a lifelong process and exploiting the structure of human environments for efficiency, for example that drawers typically open in similar ways.This research collaboration is developing a framework for lifelong planning based on experience graphs that aims to improve performance of planning over time by exploiting past experiences when solving similar planning tasks. The concept is novel because experiences are used to guide the heuristic search as opposed to be used for mere replay or adaptation. The idea that makes this possible is a novel heuristic search-based framework that can take advantage of prior experiences and still provide rigorous guarantees on completeness and path quality. The team studies how experiences can be utilized effectively during planning, how planning should gather experiences, how it should prune redundant experiences and how it can obtain experiences from demonstrations. Applications include everyday household tasks and low-volume manufacturing tasks. The software developed in this collaborative research is being integrated into the SBPL library, one of the core libraries in ROS. The project also incorporates educational activities as well as activities that help to bridge the research communities in robotics and artificial intelligence, two separate communities despite their common interest in autonomous systems.
随着时间的推移,机器人需要改进它们的行为,但为了让人类预测它们的行为,它们会产生一致的行为,这对于建立对它们行为的信任甚至与它们合作是必要的。此外,许多任务都是重复的,比如打开抽屉。该项目开发的技术通过将规划视为一个终身过程来解决这些问题,并利用人类环境的结构来提高效率,例如,抽屉通常以类似的方式打开。这项研究合作正在开发一个基于经验图的终身规划框架,旨在通过在解决类似规划任务时利用过去的经验来提高规划的性能。这个概念是新颖的,因为经验是用来指导启发式搜索,而不是仅仅用于重复或适应。使这成为可能的想法是一种新颖的基于启发式搜索的框架,它可以利用先前的经验,并且仍然提供对完整性和路径质量的严格保证。团队研究如何在规划过程中有效地利用经验,规划如何收集经验,如何剔除冗余的经验,以及如何从演示中获取经验。应用包括日常家庭任务和小批量生产任务。在这项合作研究中开发的软件正在集成到ROS的核心库之一SBPL库中。该项目还包括教育活动,以及有助于连接机器人和人工智能研究社区的活动,这是两个独立的社区,尽管他们对自主系统有共同的兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maxim Likhachev其他文献
Deliberative Object Pose Estimation in Clutter Venkatraman
杂波中的深思熟虑的物体姿态估计 Venkatraman
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Narayanan;Maxim Likhachev - 通讯作者:
Maxim Likhachev
Motion planning in urban environments: Part I
城市环境中的运动规划:第一部分
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
D. Ferguson;T. Howard;Maxim Likhachev - 通讯作者:
Maxim Likhachev
ARA : formal analysis
ARA:形式分析
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Maxim Likhachev;G. Gordon;S. Thrun - 通讯作者:
S. Thrun
Affordable Autonomy through Cooperative Sensing and Planning
通过协作感知和规划实现经济实惠的自主性
- DOI:
10.1109/icra48506.2021.9561875 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Paritosh Kelkar;Parth Chopra;Savio Pereira;D. DeLano;Aaron Miller;Kyungzun Rim;Samer A. Rajab;Jonathan Butzke;Maxim Likhachev - 通讯作者:
Maxim Likhachev
Euclidean Distance-Optimal Post-Processing of Grid-Based Paths
基于网格的路径的欧几里德距离最优后处理
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Guru Koushik Senthil Kumar;S. Aine;Maxim Likhachev - 通讯作者:
Maxim Likhachev
Maxim Likhachev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maxim Likhachev', 18)}}的其他基金
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312373 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
- 批准号:
2312955 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
- 批准号:
2313137 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313150 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant