CSR: Medium: Distributed Inference Algorithms for Machine Learning and Optimization
CSR:中:用于机器学习和优化的分布式推理算法
基本信息
- 批准号:1409802
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning systems are operating at increasing scale in ways that benefit nearly all areas of human activity, from improved voice recognition, search and advertising, automatic language translation, and on the horizon, to activities such as self-driving cars. It is already extremely hard to implement on large, scalable clusters of computers the "inference algorithms" that enable these systems, and future trends of computer data centers will further exacerbate this difficulty: increasingly large numbers of nodes, heterogeneous clusters that mix conventional microprocessors, graphics processors, larger numbers of small and power-efficient microprocessors, and hardware changes such as the introduction of flash-based solid-state disks. The goal of this proposal is to design, analyse, and implement novel inference algorithms that not only take advantage of these trends for high performance , but that also enable future, even-larger-scale systems to be implemented. The proposal specifically aims to achieve the following:1. Develop a broad family of novel optimization algorithms for machine learning;2. Analyse their convergence properties theoretically, as well as empirically;3. Release open-source code implementing them. The research proposed is based upon four likely shifts in the design of data centers of the future:1. Small and power efficient microprocessors with a much improved CPU power to energy consumption ratio will become common in the data centers of the future.2. Architectures mixing different types of hardware, ranging from computer graphics processors to general purpose multi-core microprocessors are becoming the norm among all major semiconductor manufacturers. These changes will propagate to the data center.3. Hard disks are increasingly being supplemented and replaced by solid state memory which requires 10,000 to 100,000 times less time to access.4. Modern network architectures that replace traditional hierarchical tree structures (with inherent bottlenecks) by more balanced layouts are being enabled by software-defined networking and specialized network chips. All four of these aspects offer considerable potential to design faster machine learning algorithms. Doing so requires tightly coupled algorithmic and systems design that successfully creates algorithms that work well on the kinds of systems that can be built, and systems to be built that provide the right support for machine learning algorithms. The software developed for this project will be distributed as open source.For further information see the project web site at: http://www.parameterserver.org
机器学习系统正在以越来越大的规模运行,其方式使人类活动的几乎所有领域都受益,从改进的语音识别,搜索和广告,自动语言翻译,以及即将到来的自动驾驶汽车等活动。在大型可扩展的计算机集群上实现支持这些系统的“推理算法”已经非常困难,计算机数据中心的未来趋势将进一步加剧这一困难:越来越多的节点,混合了传统微处理器、图形处理器的异构集群,大量的小型和节能微处理器,以及硬件变化,例如引入基于闪存的固态磁盘。该提案的目标是设计、分析和实现新的推理算法,这些算法不仅利用这些趋势来实现高性能,而且还能够实现未来更大规模的系统。 该提案具体旨在实现以下目标:1.为机器学习开发一系列新颖的优化算法;2.从理论上和实证上分析了它们的收敛性;3.发布实现它们的开源代码。 该研究基于未来数据中心设计的四个可能的转变:1.具有大幅提高的CPU功耗与能耗比的小型节能微处理器将在未来的数据中心中变得常见。2.混合不同类型硬件的架构,从计算机图形处理器到通用多核微处理器,正在成为所有主要半导体制造商的标准。这些更改将传播到数据中心。3.硬盘越来越多地被固态存储器所补充和取代,固态存储器需要的访问时间减少了10,000到100,000倍。4.软件定义网络和专用网络芯片正在支持以更平衡的布局取代传统分层树结构(具有固有瓶颈)的现代网络架构。 所有这四个方面都为设计更快的机器学习算法提供了相当大的潜力。这样做需要紧密耦合的算法和系统设计,成功地创建在可以构建的系统上运行良好的算法,以及为机器学习算法提供正确支持的待构建系统。 为该项目开发的软件将作为开放源代码发布。欲了解更多信息,请访问项目网站:http://www.parameterserver.org
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Andersen其他文献
Emergence of a Norm from Resistance: Using Simulation to Explore the Macro Implications of Social Identity Theory
抵抗中规范的出现:利用模拟探索社会认同理论的宏观含义
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Khadijeh Salimi;Jesse T. Richman;Regina Karp;George P. Richardson;David Andersen - 通讯作者:
David Andersen
The Limits of Meritocracy in Stabilizing Democracy and the Twin Importance of Bureaucratic Impartiality and Effectiveness
精英政治在稳定民主方面的局限性以及官僚公正性和有效性的双重重要性
- DOI:
10.1017/ssh.2021.15 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
David Andersen - 通讯作者:
David Andersen
Impartial Administration and Peaceful Agrarian Reform: The Foundations for Democracy in Scandinavia
公正的行政管理与和平的土地改革:斯堪的纳维亚半岛民主的基础
- DOI:
10.1017/s0003055423000205 - 发表时间:
2023 - 期刊:
- 影响因子:6.8
- 作者:
David Andersen - 通讯作者:
David Andersen
Early-Adulthood Economic Experiences and the Formation of Democratic Support
成年早期的经济经历和民主支持的形成
- DOI:
10.1017/s0007123422000278 - 发表时间:
2022 - 期刊:
- 影响因子:5
- 作者:
Suthan Krishnarajan;Jonathan Doucette;David Andersen - 通讯作者:
David Andersen
State capacity and political regime stability
国家能力和政权稳定性
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
David Andersen;J. Møller;Lasse Lykke Rørbæk;Svend - 通讯作者:
Svend
David Andersen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Andersen', 18)}}的其他基金
AitF: FULL: Collaborative Research: Better Hashing for Applications: From Nuts & Bolts to Asymptotics
AitF:完整:协作研究:更好的应用程序哈希:来自坚果
- 批准号:
1535821 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
NeTS: Large: Collaborative Research: HCPN: Hybrid Circuit/Packet Networking
NeTS:大型:协作研究:HCPN:混合电路/分组网络
- 批准号:
1314721 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Student Travel Support for the Eighth Symposium on Networked Systems Design and Implementation (NSDI)
第八届网络系统设计与实现研讨会(NSDI)的学生旅行支持
- 批准号:
1110708 - 财政年份:2011
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
DC: Medium: Designing and Programming a Low-Power Cluster Architecture for Data-Intensive Workloads
DC:中:为数据密集型工作负载设计和编程低功耗集群架构
- 批准号:
0964474 - 财政年份:2010
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: CT-T: Toward a More Accountable Internet
合作研究:CT-T:迈向更负责任的互联网
- 批准号:
0716287 - 财政年份:2007
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
MRI: Development of a Shared Network Measurement Storage and Analysis Infrastructure
MRI:共享网络测量存储和分析基础设施的开发
- 批准号:
0619525 - 财政年份:2006
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
CAREER: An Evolvable Architecture for Internet Data Transfer
职业:互联网数据传输的可演进架构
- 批准号:
0546551 - 财政年份:2006
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Nonlinear Optical Telecommunications Switch Technology
非线性光通信交换技术
- 批准号:
9800592 - 财政年份:1998
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Managing Dynamic Policy Systems: Mental Models and Performance
管理动态政策系统:心理模型和绩效
- 批准号:
9211521 - 财政年份:1992
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Ultrafast Dark Spatial Solitary Wave Propagation Phenomena: Physics and Device Applications
超快暗空间孤立波传播现象:物理和器件应用
- 批准号:
9105660 - 财政年份:1992
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
相似海外基金
CSR: Medium: Rethinking Distributed SSD Storage Systems
CSR:中:重新思考分布式 SSD 存储系统
- 批准号:
1763546 - 财政年份:2018
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
CSR: Medium: Next-Generation Cloud Federation via a Geo-Distributed Datastore
CSR:中:通过地理分布式数据存储的下一代云联合
- 批准号:
1703560 - 财政年份:2017
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
CSR: Medium: Extensible Distributed Systems Solutions for Community Supported Child-Independent Mobility
CSR:中:用于社区支持的儿童独立移动的可扩展分布式系统解决方案
- 批准号:
1703497 - 财政年份:2017
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
CSR: Medium: Salt: combining ACID and BASE in a distributed database
CSR:中:Salt:在分布式数据库中结合 ACID 和 BASE
- 批准号:
1758043 - 财政年份:2017
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
NeTS: CSR: Medium: Collaborative Research: Enabling Flexible and High Performance Big Data Analytics Over Geo-Distributed Clouds
NeTS:CSR:中:协作研究:通过地理分布式云实现灵活且高性能的大数据分析
- 批准号:
1563095 - 财政年份:2016
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
NeTS: CSR: Medium: Collaborative Research: Enabling Flexible and High Performance Big Data Analytics Over Geo-Distributed Clouds
NeTS:CSR:中:协作研究:通过地理分布式云实现灵活且高性能的大数据分析
- 批准号:
1563011 - 财政年份:2016
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
CSR: Medium: Collaborative Research: PEC: A Data-Centric Architecture for Pervasive Edge Computing in Heterogeneous Extensible Distributed Systems
CSR:媒介:协作研究:PEC:异构可扩展分布式系统中普遍边缘计算的以数据为中心的架构
- 批准号:
1513505 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
CSR: Medium: Collaborative Research: A Data-Centric Architecture for Pervasive Edge Computing in Heterogeneous Extensible Distributed Systems
CSR:媒介:协作研究:异构可扩展分布式系统中普遍边缘计算的以数据为中心的架构
- 批准号:
1513719 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
CSR: Medium: Mobile Distributed Computing in the Cloud
CSR:媒介:云中的移动分布式计算
- 批准号:
1409523 - 财政年份:2014
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
CSR: Medium: Salt: combining ACID and BASE in a distributed database
CSR:中:Salt:在分布式数据库中结合 ACID 和 BASE
- 批准号:
1409555 - 财政年份:2014
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant














{{item.name}}会员




