Collaborative Research: Design of Low-Hysteresis High-Susceptibility Materials by Nanodomain Engineering
合作研究:利用纳米域工程设计低磁滞高磁化率材料
基本信息
- 批准号:1410322
- 负责人:
- 金额:$ 30.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHICAL SUMMARYThis award supports theoretical and computational research aimed to develop new design concepts and principles for shape memory alloys, and ferroelectric and ferromagnetic materials to achieve improved functionality for various applications. In these materials structural domains can switch from one to another by the application of an external field, such as stress, electric or magnetic fields, allowing sensing and actuation to be realized simultaneously. These smart materials have found critical applications in many fields, including medical devices, satellites, robots, navigation systems, data storage and retrieving, electromechanical and electro-optic systems, to name a few. However, typical domain structures formed in these materials are too large leading to properties that are not optimal for applications. Another common problem is that functional fatigue that leads to premature failure. The PIs will use advanced computational and theoretical methods to investigate new design concepts and principles that connect crystal structure, defects, domain structure and functional properties. These design concepts and principles are aimed to guide experimental efforts and accelerate the discovery of new smart as well as structural materials with optimal properties. This is in alignment with the Materials Genome Initiative. This project will directly prepare graduate students to immediately contribute to the success of integrated computational materials science and engineering. Additionally, the training of researchers involved in materials development will afford a rapid uptake of new design concepts and methodology, resulting in increased effectiveness of materials technologists. The educational outreach of the project is designed to have a significant influence on encouraging high school students with diverse ethnic backgrounds to enter science and engineering disciplines.TECHNICAL SUMMARYThis award supports theoretical and computational research that focuses on ferroic-based functional materials including shape memory alloys, and ferroelectric and ferromagnetic materials. The main objective of this project is to accelerate the discovery of novel low-hysteresis high-susceptibility ferroic-based functional materials with strong fatigue resistance via the design of (a) transformation pathway networks, and (b) structural and chemical heterogeneities. The former explores the means to achieve high susceptibility by identifying systems with isolated circular transformation pathways, while the latter explores how to transform conventional micron-sized, long-range ordered, self-accommodating strain, polarization and magnetization domains into nanodomains by suppressing autocatalysis and regulating the spatial extent of domain growth and coarsening during ferroic phase transitions. A rigorous theoretical framework will be developed based on group theory, phase transformation crystallography and graph methods to analyze transformation pathway networks (TPNs). Through investigating the symmetry and topology of TPN graphs, a new classification of structural phase transformations will be introduced. The PIs aim to distinguish three distinct TPN types: ones that could provide high susceptibility, ones that are reversible and exhibit shape memory effect, and ones that could generate dislocations through transformations causing functional fatigue. The PI will perform systematic first principles and atomistic calculations for specific systems to assist in constructing and classifying TPN graphs, to quantify the energy landscapes, and to investigate the effects of various crystalline defects. Finally phase field simulations will be carried out to examine possible continuous phase separations and other mechanisms to generate nanoscale structural and chemical non-uniformities in the parent phase and to study their effects on subsequent ferroic phase transitions and ferroic nanodomain formation. The responses of these ferroic nanodomains to temperature and external fields will be documented. Drastically different properties from those of their microdomain counterparts are expected, in particular ultra-low-modulus quasi-linear pseudoelasticity, low hysteresis, high susceptibility such as giant piezoelectricity, giant magnetostriction and giant non-hysteretic strain response, and strong fatigue resistance.
该奖项支持理论和计算研究,旨在为形状记忆合金以及铁电和铁磁材料开发新的设计概念和原则,以实现各种应用的改进功能。在这些材料中,结构域可以通过施加外场(如应力、电场或磁场)从一个切换到另一个,从而允许同时实现传感和驱动。这些智能材料在许多领域都有关键的应用,包括医疗设备、卫星、机器人、导航系统、数据存储和检索、机电和光电系统等等。然而,在这些材料中形成的典型的磁畴结构太大,导致性能不适合应用。另一个常见的问题是导致过早衰竭的功能疲劳。PI将使用先进的计算和理论方法来研究新的设计概念和原理,这些设计概念和原理将晶体结构、缺陷、磁区结构和功能特性联系起来。这些设计概念和原则旨在指导实验工作,加速发现具有最佳性能的新型智能和结构材料。这与材料基因组倡议是一致的。这个项目将直接培养研究生,让他们立即为综合计算材料科学和工程的成功做出贡献。此外,对参与材料开发的研究人员的培训将使他们能够迅速接受新的设计概念和方法,从而提高材料技术员的效率。该项目的教育推广旨在对鼓励不同种族背景的高中生进入科学和工程学科产生重大影响。技术总结该奖项支持专注于铁基功能材料的理论和计算研究,包括形状记忆合金,以及铁电和铁磁材料。该项目的主要目标是通过设计(A)转变路径网络和(B)结构和化学异质性,加速发现新型低滞后、高灵敏度、抗疲劳的铁基功能材料。前者探索了通过识别具有孤立的圆形相变路径的系统来获得高磁化率的方法,而后者探索了如何通过抑制自催化和调节铁相相变期间磁畴生长和粗化的空间程度来将传统的微米级、长程有序、自适应的应变、极化和磁化磁畴转变为纳米磁畴。基于群论、相变结晶学和图论方法,我们将建立一个严密的理论框架来分析转化途径网络。通过对TPN图的对称性和拓扑性的研究,提出了一种新的结构相变分类。PI旨在区分三种不同的TPN类型:一种是可以提供高敏感性的,一种是可逆的并表现出形状记忆效应,另一种是可以通过引起功能疲劳的转变产生错位的。PI将对特定的体系进行系统的第一原理和原子计算,以帮助构建和分类TPN图,量化能量景观,并调查各种晶体缺陷的影响。最后,将进行相场模拟,以研究可能的连续相分离和其他在母相中产生纳米级结构和化学不均匀的机制,并研究它们对随后的铁相相变和铁相纳米结构域形成的影响。这些铁性纳米结构域对温度和外场的响应将被记录下来。微域材料具有与微域材料截然不同的特性,特别是超低模数准线性伪弹性、低磁滞、高灵敏度,如巨压电性、超大磁致伸缩和大的非滞后应变响应,以及较强的抗疲劳性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yunzhi Wang其他文献
Revealing the atomistic mechanisms of strain glass transition in ferroelastics
揭示铁弹性体应变玻璃化转变的原子机制
- DOI:
10.1016/j.actamat.2020.04.014 - 发表时间:
2020 - 期刊:
- 影响因子:9.4
- 作者:
Chuanxin Liang;Dong Wang;Zhao Wang;Xiangdong Ding;Yunzhi Wang - 通讯作者:
Yunzhi Wang
Hotspots Analysis of Electronic Health
电子健康热点分析
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Wentao Wang;Kun Zhang;L. Jing;Yunzhi Wang;Shuai Zhang;Xiao Xie;Yang - 通讯作者:
Yang
Thermally mediated multiferroic composites for the magnetoelectric materials
用于磁电材料的热介导多铁复合材料
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Shengguo Lu;Z. Fang;E. Furman;Yunzhi Wang;Qiming Zhang;Y. Mudryk;K. Gschneidner;V. Pecharsky;C. Nan - 通讯作者:
C. Nan
Novel transformation pathway and heterogeneous precipitate microstructure in Ti-alloys
钛合金中的新型转变途径和异质析出物微观结构
- DOI:
10.1016/j.actamat.2020.06.048 - 发表时间:
2020-09 - 期刊:
- 影响因子:9.4
- 作者:
Tianlong Zhang;Dong Wang;Yunzhi Wang - 通讯作者:
Yunzhi Wang
Predicting grain boundary structure and energy in BCC metals by integrated atomistic and phase-field modeling
- DOI:
https://doi.org/10.1016/j.actamat.2018.11.023 - 发表时间:
2019 - 期刊:
- 影响因子:
- 作者:
Di Qiu;Pengyang Zhao;Chen Shen;Weijie Lu;Di Zhang;Matous Mrovec;Yunzhi Wang - 通讯作者:
Yunzhi Wang
Yunzhi Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yunzhi Wang', 18)}}的其他基金
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
- 批准号:
2333551 - 财政年份:2024
- 资助金额:
$ 30.79万 - 项目类别:
Continuing Grant
Collaborative Research: Traversals in Transformation Strain Space and Microstructure Design for High Performance Ferroelastic Materials
合作研究:高性能铁弹性材料的变换应变空间遍历和微观结构设计
- 批准号:
1923929 - 财政年份:2020
- 资助金额:
$ 30.79万 - 项目类别:
Continuing Grant
DMREF/Collaborative Research: Accelerated Development of Next Generation of Ti Alloys by ICMSE Exploitation of Non-Conventional Transformation Pathways
DMREF/合作研究:通过 ICMSE 探索非常规转变途径加速下一代钛合金的开发
- 批准号:
1435483 - 财政年份:2014
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
Materials World Network: Collaborative Research: Modeling Ferroelastic Strain Glasses
材料世界网络:合作研究:铁弹性应变玻璃建模
- 批准号:
1008349 - 财政年份:2010
- 资助金额:
$ 30.79万 - 项目类别:
Continuing Grant
FRG: Microstructure Design of Advanced Multi-Domain Magnetic Materials Under Applied Fields
FRG:先进多畴磁性材料在应用领域的微结构设计
- 批准号:
9905725 - 财政年份:2000
- 资助金额:
$ 30.79万 - 项目类别:
Continuing Grant
CAREER: Simulating the Evolution of Advanced Microstructure
职业:模拟先进微观结构的演化
- 批准号:
9703044 - 财政年份:1997
- 资助金额:
$ 30.79万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
- 批准号:
2348641 - 财政年份:2024
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
Collaborative Research: Meshed GNSS-Acoustic Array Design for Lower-Cost Dense Observation Fields
合作研究:用于低成本密集观测场的网状 GNSS 声学阵列设计
- 批准号:
2321297 - 财政年份:2024
- 资助金额:
$ 30.79万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 30.79万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 30.79万 - 项目类别:
Continuing Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
- 批准号:
2335235 - 财政年份:2024
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
- 批准号:
2419423 - 财政年份:2024
- 资助金额:
$ 30.79万 - 项目类别:
Standard Grant














{{item.name}}会员




